Anuket Project

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 32 Next »


Introduction:

Cross-NUMA tests as part of OPNFV Plugfest (Gambia) - January 2019..............

  1. VSPERF-Scenarios: P2P and PVP.
  2. Workloads: vSwitchd, PMDs and VNF.
  3. VNF: L2 Forwarding
  4. vswitch: OVS and VPP.


Testcases Run:

Framesizes: 64, 128, 256, 512, 1024, 1280, 1518

  1. RFC2544 Throughput Test - NDR. 
  2. Continuous traffic Test - 100%

Testbed:

 Intel POD12 

Node-4 (DUT), Node-5 (Software Traffic Generators) and H/W Traffic Generator.


CPU Topology on DUT

P2P Scenarios

Summary of P2P Scenarios:

Scenario

Possible Core-allocations:
Assumptions: Numa-0 (0-21) Numa-1 (22-43)

vSwitch Core #: 02

DUT Ports, TGen (Hardware) Ports

1

PMDs: 4, 5 (0x30)

DUT: eno5, eno6

TGEN: 5, 6

2

PMDs: 22, 23 (0xC00000)

DUT: eno5, eno6

TGEN: 5, 6

3

PMDs: 4, 22 (0x400010)

DUT: eno5, eno6

TGEN: 5, 6

4

PMDs: 4, 5 (0x30)

DUT: eno5, ens801f2

TGEN: 5, 7

5

PMDs: 22, 23 (0xC00000)

DUT: eno5, ens801f2

TGEN: 5, 7

6

PMDs: 4, 22 (0x400010)

DUT: eno5, ens801f2

TGEN: 5, 7

7

PMDs: 4, 5 (0x30)

DUT: ens801f2, ens802f3

TGEN: 7, 8

8

PMDs: 22, 23 (0xC00000)

DUT: ens801f2, ens802f3

TGEN: 7, 8

9

PMDs: 4, 22 (0x400010)

DUT: ens801f2, ens802f3

TGEN: 7, 8

PVP Scenarios

Summary of PVP Scenarios:

Scenario

Possible Core-allocations:

Assumptions: Numa-0 (0-21) Numa-1 (22-43)

vSwitch Core # : 02

DUT Ports

TGen Ports

(Hardware)

1

PMDs: 4, 5, 6, 7

(0xF0)

VNF: 8,9

DUT: eno5, eno6

TGEN: 5, 6

2

PMDs: 4, 5, 6, 7

(0xF0)

VNF: 22, 23

DUT: eno5, eno6

TGEN: 5, 6

3

PMDs: 4, 5, 6, 7

(0xF0)

VNF: 8, 22

DUT: eno5, eno6

TGEN: 5, 6

4

PMDs: 4,5,22,23

(0xC00030)

VNF: 8,9

DUT: eno5, ens801f2

TGEN: 5, 7

5

PMDs: 4,5, 22, 23

(0xC00030)

VNF: 24, 25

DUT: eno5, ens801f2

TGEN: 5, 7

6

PMDs: 4, 5, 22, 23

(0xC00030)

VNF: 8, 24

DUT: eno5, ens801f2

TGEN: 5, 7

7

PMDs: 22, 23, 24, 25

(0x3C00000)

VNF: 26, 27

DUT: ens801f2, ens802f3

TGEN: 7, 8

8

PMDs: 22, 23, 24, 24

(0x3C00000)

VNF: 4,5

DUT: ens801f2, ens802f3

TGEN: 7, 8

9

PMDs: 22, 23, 24, 25

(0x3C00000)

VNFs: 4,26

DUT: ens801f2, ens802f3

TGEN: 7, 8


Results: P2P

RFC2544 Throughput Test Results


Continuous Throughput Test Results (Max Received Frame Rate at 100% of Line rate offered load)

Results: PVP

RFC2544 Throughput Test Results


Continuous Throughput Test Results (Max Received Frame Rate at 100% of Line rate offered load)

Inferences

Theme: What is expected, What is unexpected,  

P2P:

  1. Only the smaller (64 and 128) packet sizes matter. For packets sizes above 128 the throughput performance remains similar.
  2. Scenarios 2 and 7 can be seen as the worst case scenarios with both the PMDs running on different NUMA than the NIC. As expected, the performance is consistently low for both scenarios-2 and 7.
  3. Interesting cases are Scenario-3 and Scenario-9.  Here a single pmd ends up serving both the NICs. This results in poorer performance than Scenario-2 and 7.
  4. Scenario 1, 6, and 8 can be seen as good cases where each of the NICs are served by single, separate PMDs.


PVP:

In these scenarios, we ensure there is always at least 1 PMD mapped to a NUMA to which a physical NIC is mapped to.


Generic:

Possible Variations

  1. Increase the Number of CPUs to 4 for the VNF.
  2. Phy2phy case (no VNF).
  3. Try different forwarding VNF
  4. Different Virtual Switch (VPP)
  5. RxQ Affinity.


Notes on Documentation

  1. must view log files, qemu threads need to match the intended scenario for VM -
  2. Christian created qemu command (and documentation) - check this for VM mapping
  3. SR: CT's command is only the host
  4. qemu command line -smp 2 should do this - simulates two Numa Nodes  - need to see how the VM see it's architecture: numactl -h
  • No labels