VSPERF Design

/[This is work-in-progress draft of a document that is intended to be included in the vsperf source code under /docs _

Intended Audience

This document is intended to aid those who want to modify the vsperf code. Or to extend it - for example to add support for new traffic generators,
deployment scenarios and so on.

Usage

Example Command Lines
$./vsperf -h ofcourse, lists all the cli options
"$./vsperf --tests ‘tput' " run all tests that have ‘tput' in their name - p2p_tput, pvp_tput etc.

"$.Ivsperf --conf-file my_settings.py --tests 'tput' " as above but override default configuration with settings in 'my_settings.py'. This is useful as modifying
configuration directly in the configuration files in conf/NN_*.py shows up as changes under git source control

"$.Ilvsperf --test-params 'rfc2544_duration=10;rfc2544_trials=1;packet_sizes=64" --tests 'pvp_tput' " override specific test parameters. Useful for shortening
the duration of tests for development purposes.

Typical Test Sequence

This is a typical flow of control for a test.

testcase vnf_ctl vnf vswitch_ctl vswitch traffic_ctl traffic_gen load_gen

skipPing details offindingl and creating correct subclasses of IVSwitch, |TrafficGenerator atc.
create(vswitch class

create(vnf class;.

vnf_cilis
instance of

VnfControlle-
Pvp

create()

raffic_cil 1s
instance of
TrafficControl-
lerRFC2544

Fython context
management

profocal

__enter__,

—exit_"is

used fo
start/stop
controllers
enter ()
create()
vswitch is
instance of
OvsDpdkVh-
ost
add phy port()
add vport()
add flow()
kipping full details of switch configuration
enter | »
create()

create/start()

Toadgen
simulates
system load
usm%u'stress

ol

send _traffic(traffic)

Traffic
%pecifies the
raffic Type'

from
01_testcases-
.conf as well
as other traffic

details

send rfc2544 throughput()

i l e .
implementati-

on is

dependent on
the vendor

specific Traffic
Gen used

returns
S L

get results()

(:’write_result_tu_fi le()

This diagram was generated using mscgen.

Configuration =

The conf package contains the configuration files (*.conf) for all system components, it also provides a ““settings™ object that exposes all of these settings.

http://www.mcternan.me.uk/mscgen/

Settings are not passed from component to component. Rather they are available globally to all components once they import the conf package.
from conf import settings
log_file = settings.getValue('LOG_FILE_DEFAULT")

Settings files (*.conf) are valid python code so can be set to complex types such as lists and dictionaries as well as scalar types:

first_packet_size = settings.getVal ue(' PACKET_SI ZE_LI ST')[0]

{group3}

Precedence

Configuration files follow a strict naming convention that allows them to be processed in a specific order. All the .conf files are named “"NN_name.conf"",
where NN is a decimal digit. The files are processed in order from 00_name.conf to 99_name.conf so that if the name setting is given in both a lower and
higher numbered conf file then the higher numbered file is the effective setting as it is processed after the setting in the lower numbered file.

The values in the file specified by “*--conf-file™ takes precedence over all the other configuration files and does not have to follow the naming convention.

Other Configuration

““conf.settings™ also loads configuration from the command line and from the environment.

VM, vSwitch, Traffic Generator Independence

VSPERF supports different vSwithes, Traffic Generators and VNFs by using standard object-oriented polymorphism:

® Support for vSwitches is implemented by a class inheriting from IVSwitch.
® Support for Traffic Generators is implemented by a class inheriting from ITrafficGenerator.
® Support for VNF is implemented by a class inheriting from IVNF.

By dealing only with the abstract interfaces the core framework can support many implementations of different vSwitches, Traffic Generators and VNFs.

IVSwitch

class |VSwitch:
start(self)
st op(sel f)
add_swi t ch(sw t ch_nane)
del _swi tch(sw t ch_nane)
add_phy_port (sw t ch_nane)
add_vport (sw t ch_nane)
get _ports(sw tch_nane)
del _port(sw tch_nane, port_nane)
add_fl ow(sw tch_nane, flow)
del _fl ow(sw tch_nane, fl ow=None)

IVnf

start (nmenory, cpus,
nmoni tor_path, shared_path_host,
shar ed_pat h_guest, guest_pronpt)
stop()
execut e(conmand)
wai t (guest _pronpt)
execute_and_wai t (conmmand)

ITrafficGenerator

connect ()
di sconnect ()

send_burst _traffic(traffic, nunpkts, time, franerate)

send_cont _traffic(traffic, time, framerate)
start_cont_traffic(traffic, tine, framerate)
stop_cont _traffic(self):

send_rfc2544_throughput(traffic, trials, duration, |ossrate)
start _rfc2544_throughput(traffic, trials, duration, |ossrate)
wai t _rfc2544_t hr oughput (sel f)

send_rfc2544_back2back(traffic, trials, duration, |ossrate)
start _rfc2544_back2back(traffic, , trials, duration, |ossrate)
wai t _rfc2544_back2back()

Note send_xxx() blocks whereas start_xxx does not and must be followed by a subsequent call to wait_xxx().

Controllers

Controllers are used in conjunction with abstract interfaces as way of decoupling the control of vSwtiches, VNFs and TrafficGenerators from other
components.

The controlled classes provide basic primitive operations. The Controllers sequence and co-ordinate these primitive operation in to useful actions. For
instance the vswitch_controller_PVP can be used to bring any vSwitch (that implements the primitives defined in IVSwitch) into the configuration required
by the Phy-to-Phy Deployment Scenario.

In order to support a new vSwitch only a new implementation of IVSwitch needs be created for the new vSwitch to be capable of fulfilling all the
Deployment Scenarios provided for by existing or future vSwitch Controllers.

Similarly if a new Deployment Scenario is required it only needs to be written once as a new vSwitch Controller and it will immediately be capable of
controlling all existing and future vSwitches in to that Deployment Scenario.

Similarly the Traffic Controllers can be used to co-ordinate basic operations provided by implementers of ITrafficGenerator to provide useful tests. Though
traffic generators generally already implement full test cases i.e. they both generate suitable traffic and analyse returned traffic in order to implement a test
which has typically been predefined in an RFC document. However the Traffic Controller class allows for the possibility of further enhancement - such as
iterating over tests for various packet sizes or creating new tests.

Traffic Controller's Role

traffic_defaults HwSwTrafficGen

Dxia, Spirent, Xena,
Moongen, etc. B}

traffic_gen

testcase traffic_ctlr

create(traffic gen class)

create()

connect()

send fraffic(traffic)

---------------- foreach packet_size in configuration -~

imvokes
send_rfc2544 back-
2back/tputor
?er]g]g_[ctcm% | a%’ed o]n
rafficl'traffic_type';
Also fetches
duration/trials from
config

Send rfc2544 tput(traffic, ...

start_rfc2544 tput(traffic) —
default traffic params = read(

merge fraffic with ﬁ

—

default_traffic_para-
ms)

I
Actual fest staris
here. Details of
interactions between
traffic_gen class
actial traffic
enerator
(HwSw TrafficGen) are
hidden to vsperf

wait_rfc2544 throughput() ‘:::,

esults (stringlvalug pairs).

store_results() b}
----------------------------------- end fareach--------weeesemmmemnenenens

get results()

write_results_to file

Loader & Component Factory

The working of the Loader package (which is responsible for finding arbitrary classes based on configuration data) and the Component Factory which is
responsible for choosing the correct class for a particular situation - e.g. Deployment Scenario can be seen in this diagram.

app loader compeonent_factory traffic_ctir
get trafficgen class()
searches
TRAFFICGEN_DIR for
classes implementing [Traffic
and matching name
configured as TRAFFICGEN
g oo EffICGenClass

create trafficltraffic type TrafficGenClass

from a traffic_type (string) to

Component Factory maps ﬁ
a TrafficController class

create()

traffic_ctlr

Routing Tables

Vsperf uses a standard set of routing tables in order to allow tests to easily mix and match Deployment Scenarios (PVP, P2P topology), Tuple Matching
and Frame Modification requirements.

oo +
| |
| Table O | table#0 - Match table. Flows designed to force 5 & 10 tuple matches go
here.
| |
B +
|
I
v
R + table#l - Routing table. Flows to route packets between ports goes here.
| | The chosen port is communicated to subsequent tables by setting the
| Table 1 | metadata value to the egress port nunmber. CGenerally this table
| | is set-up by by the vSwitchController.
B +
|
I
v
R + table#2 - Frane nodification table. Frane nodification flow rules are
| | isolated in this table so that they can be turned on or off
| Table 2 | without affecting the routing or tuple-matching flow rules.
| | This allows the frame nodification and tuple matching required by the
R R + tests in the VSWTCH PERFORVANCE FOR TELCO NFV test specification
| to be independent of the Deploynent Scenario set up by the
vSwi t chControl |l er.
|
v
B S +
| |
| Table 3 | table#3 - Egress table. Egress packets on the ports setup in Table 1.
| |
R +

Appendix

Sequence Diagram Text for mscgen

mscgen is available here (http:_www.mcternan.me.uk/mscgen/)

nsc {
#0Opti ons
hscale = "2.0";

#Entities
vsperf, testcase, vnf_ctl, vnf, vswitch_ctl, vswitch, traffic_ctl, traffic_gen, |oad_gen;

#Arcs

vsperf note vsperf [label ="$./vsperf pvp_tput"];

vsperf note vsperf [label =" foreach test specified"];

vsperf => testcase [label="run()"];

--- [label =" skipping details of finding and creating correct subclasses of |IVSwitch, |TrafficCenerator
etc." 1;

testcase => vswitch_ctl [|abel ="create(vswi tch_class"];

vswi tch_ctl note vswitch_ctl [label="vswitch_ctl is instance of Vswi tchControllerPvp"];
testcase => vnf_ctl [|abel="create(vnf_class)"];

vnf_ctl note vnf_ctl [label="vnf_ctl is instance of VnfControllerPvp"];

testcase => traffic_ctl [|abel="create()"];

traffic_ctl note traffic_ctl [label="traffic_ctl is instance of TrafficControllerRFC2544"];

[

testcase note testcase [|abel ="Python context nanagenent protocol _ _enter__, _ exit__ is used to start/stop
controllers"];

testcase => vswitch_ctl [label="__enter__()"];

vswitch_ctl => vswitch [|abel ="create()"];

vswitch note vswitch [l abel ="vswitch is instance of OvsDpdkVhost"];

vswi tch_ctl => vswitch [|abel ="add_phy_port()" 1;

vswitch_ctl => vswitch [|abel ="add_vport()" 1;

vswitch_ctl => vswitch [|abel ="add_flow()"];

--- [label =" skipping full details of switch configuration "];

[11s

testcase => vnf_ctl [label="__enter__()"];

vnf_ctl => vnf [|abel="create()"];

[11s

testcase => | oad_gen [|abel ="create/start()" 1;

| oad_gen note | oad_gen [|abel ="I oadgen sinul ates systemload using 'stress' tool "];

[

testcase => traffic_ctl [label="send_traffic(traffic)"];

traffic_ctl note traffic_ctl [label=""traffic' specifies the 'Traffic Type' from 01_testcases.conf as well
as other traffic details"];

traffic_ctl => traffic_gen [|abel ="send_rfc2544_t hroughput()"];

traffic_gen note traffic_gen [l abel ="The inplenmentation is dependent on the vendor specific Traffic Gen
used"];

[

traffic_ctl << traffic_gen [label="returns results as str:value pairs"];

testcase << traffic_ctl;

testcase => traffic_ctl [label ="get_results()"];

testcase => testcase [label="write_result_to file()"];

[

[T

	VSPERF Design

