
1.
2.
3.
4.

1.
2.
3.
4.
5.
6.

1.
a.
b.

Airship Manifest Creation For New Sites

Introduction
Process
Preparation
Assumptions
Authoring: Customizing the Parameters

Deployment Configuration and Strategy
Profiles

Hardware Profile
Server
Device-Aliases

NICs
Disks

Others
Host Profiles

Nodes
Network Definition

Network
Network Link

Software
Charts

Kubernetes
Undercloud Platform
Ceph
OpenStack Helm Infra
OpenStack Helm - Compute Kit
Tenant-Ceph
Config

PKI-Catalog
Secrets

Publickeys of the Users.
Passphrases of the users

Boot Actions
Rack
Region

Generating Certificates
Publishing

Introduction
This document provides instructions for creating Airship manifests for new sites.

Process
The process of creating manifests that would be used for deployment involves the following steps:

Preparation - Cataloging the hardware, network topology, public keys, and so on.
Authoring - Customizing the templates using the information collected in the Preparation phase.
Auto-Generation - Generating certificates.
Publishing - Publishing to OPNFV-Airship's Repository.

Preparation
The user needs to collect the following information before starting the authoring process.

IPMI details of the Nodes. For Intel pods, this information is available in the wiki. Example: Intel POD15
Disk Information. User can boot into any system and run this command: sudo lshw -c disk
PCI IDs of NICs. User can boot into any system and run this command: sudo lshw -c network businfo
The topology and underlay networking details. For Intel pods, this information is available in the wiki. Example: Intel POD15
Public Keys of Users.
Any custom requirements with regards to software.

Assumptions
All the hardware are uniform.

Same number of NICs with the same PCI IDs.
Same number of disks with the same addresses.

#
#

2. Everything is named and their names are used for reference. In Airship, the filename is not important, but the name in the 'schema' (found in
schema/metadata/name) is important.

Authoring: Customizing the Parameters

Deployment Configuration and Strategy

This section is added mainly for completeness. User may choose to configure these values if required. For example, with a slow internet access site, some
timeouts may be modified. Or, If user wants to perform some kind of check between two actions.

Parameter Subcategory-
1

Subcategory-
2

Description Example Value

physical_prov
isioner

deployment_stra
tegy

Name of the strategy to use. User can use the one that is defined in
airshipit/treasuremap/global/deployment

See below.

deployment-strategy

deploy_interval The seconds delayed between checks for progress of the step that
performs deployment of servers

30

deploy_timeout The maximum seconds allowed for the step that performs deployment of
all servers

3600

destroy_interval The seconds delayed between checks for progress of destroying
hardware nodes

30

destroy_timeout The maximum seconds allowed for destroying hardware nodes 900

join_wait The number of seconds allowed for a node to join the Kubernetes cluster 0

prepare_node_in
terval

The seconds delayed between checks for progress of preparing nodes 30

prepare_node_ti
meout

The maximum seconds allowed for preparing nodes 1800

prepare_site_int
erval

The seconds delayed between checks for progress of preparing the site 10

prepare_site_tim
eout

The maximum seconds allowed for preparing the site 300

verify_interval The seconds delayed between checks for progress of verification 10

verify_timeout The maximum seconds allowed for verification 60

kubernetes

node_status_inte
rval

node_status_tim
eout

kubernetes_p
rovisioner

drain_timeout Maximum seconds allowed for draining a node 3600

drain_grace_peri
od

Seconds provided to Promenade as a grace period for pods to cease 1800

clear_labels_tim
eout

Maximum seconds provided to Promenade to clear labels on a node 1800

remove_etcd_tim
eout

Maximum seconds provided to Promenade to allow for removing etcd
from a node

1800

etcd_ready_time
out

Maximum seconds allowed for etcd to reach a healthy state after a node
is removed

600

armada+

get_releases_tim
eout

Timeout for retrieving Helm charts releases after deployment 300

get_status_timeo
ut

Timeout for retrieving status 300

manifest+ Name of the manifest document that the workflow will use during site
deployment activities

'full-site'

1.
2.

post_apply_time
out

7200

validate_design_
timeout

Timeout to validate the design 600

Deployment-Strategy

groups Named sets of nodes that will be deployed together

name Name of the group masters

critical If this group is required to continue to additional phases of deployment true

depends_on Group names that must be successful before this group can be
processed

[]

selectors A list of identifying information to indicate the nodes that are members of
this group. Each selector has following 4 filter values

node_names Name of the node node01

node_labels Label of the node ucp_control_plane: enabled

node_tags Tags in Node control

rack_names Name of the rack rack01

success_criteria A list of identifying information to indicate the nodes that are members of
this group.

When no criteria are specified, it means that no checks are done.
Processing continues as if nothing is wrong

percent_success
ful_nodes

The calculated success rate of nodes completing the deployment phase. 75 would mean that 3 of 4 nodes
must complete the phase successfully

minimum_succe
ssful_nodes

An integer indicating how many nodes must complete the phase to be
considered successful

3

maximum_failed
_nodes

An integer indicating a number of nodes that are allowed to have failed
the deployment phase and still consider that group successful.

0

Typical Ordering of groups is shown below.

 __________ __________________
| ntp-node | | monitoring-nodes |
 ---------- ------------------
 |
 ____V__________
control-nodes
 |_________________________
 | |
 ______V__________ ______V__________
 | compute-nodes-1 | | compute-nodes-2 |
 ----------------- -----------------

Profiles
There are two important categories of profiles that the user should create to match their environment:

Hardware (site/<site_name>/profiles/hardware/<profile_name>.yaml)
Host site/<site_name>/profiles/host/<profile_name(s)>.yaml

Hardware Profile

Under the hardware profile, user can provide details about the server, and a few device (network and disk) aliases. User can contact the administrator to
obtain this information. Otherwise, one has to obtain this information from the 'lshw' command. For example, to know the NIC names and PCI IDs: sudo
lshw -c network -businfo

Once the user has the hardware information, it is used to configure the following parameters:

Server

Parameter Description Example Value

vendor Vendor of the server chassis Intel

1.
2.
3.
4.
5.

generation Generation of the chassis model '4'

hw_version Version of the chassis model within its generation '3'

bios_version The certified version of the chassis BIOS 'SE5C

boot_mode Mode of the default boot of hardware - bios, uefi bios

bootstrap_protocol Protocol of boot of the hardware - pxe, usb, hdd 'pxe

pxe_interface Which interface to use for network booting within the OOB manager, not OS device 0

Device-Aliases

NICs

User can categorize the NICs in the hardware as either control-plane NICs or dataplane NICs. There can be one or more NICs in each category. For
example, the following could be defined: ctrl_nic1, ctrl_nic2, ctrl_nic3, and data_nic1, data_nic2, data_nic3, and so on. It is better to use names that are
self-explanatory. For example, if you have a separate NIC for PXE, name it as pxe_nic. This categorization will be referred in the host-profiles. For every
NIC defined, the below information can be configured.

Parameter Description Example Value

address The PCI address of the NIC 0000:04:00.0

dev_type Description of the NIC 'I350 Gigabit Network Connection'

bus_type The bus supported 'pci'

Disks

The disks can be either bootdisk or datadisk(s). Similar to NICs, self-explanatory names should be chosen. For example, cephjournal1 can be the name for
one of the disks use as one the Ceph journals.

For every disk defined, the below information can be configured:

Parameter Description Example Value

address The bus address of the disk 0:2.0.0

dev_type Description of the disk. 'INTEL SSDSC2BB48'

bus_type The bus supported 'scsi'

Others

Parameter Subcategory-1 Subcategory-2 Description Example Value

cpu_set

kvm '4-43,48-87'

huge_pages

dpdk

size '1G'

count 32

Host Profiles

The following items are covered:

Mapping NICs of the host to the networks it would belong to. NOTE: For definition of network, please refer to Networks section below.
How the Bootdisk is partitioned.
Which software components are enabled on a particular host.
What hardware profile that host is using.
Platform-specific configuration for the host.

For the majority of the cases, you only need two host profiles - Dataplane and Control Plane. Of course, the user can create more than 2 and use them
accordingly. The below table summarizes the configurable parameters for the host profiles.

Note: One host profile can adopt values from other host profile.

Parameter Category Subcategory-1 Subcategory-2 Subcategory-3 Subcategory-4 Description Example Value

hardware_profile NA NA The hardware profile used by the host intel_2600.yaml

primary_network NA NA The main network used for administration dmz

Interfaces NA NA Define each interface of the host in detail.

Name NA Name of the Interface dmz, data1

device_link The name of the networkLink that will be
attached to this interface. NetworkLink
definition includes part of the interface
configuration such as bonding (see
below)

dmz, data1

slaves NIC Aliases. The list of hardware
interfaces used for creating this
interface. This value can be a device
alias defined in the HardwareProfile or
the kernel name of the hardware
interface. For bonded interfaces, this
would list all the slaves. For non-bonded
interfaces, this should list the single
hardware interface used

ctrl_nic1, data_nic1

networks This is the list of networks to enable on
this interface. If multiple networks are
listed, the NetworkLink attached to this
interface must have trunking enabled or
the design validation will fail.

dmz, private,
management

storage Either in a HostProfile or BaremetalNode
document. The storage configuration can
describe the creation of partitions on
physical disks, the assignment of
physical disks and/or partitions to
volume groups, and the creation of
logical volumes.

physical_devices*
(This configuration is
repeated for every
disk)

A physical device can either be carved
up in partitions (including a single
partition consuming the entire device) or
added to a volume group as a physical
volume. Each key in the physical_dev

mapping represents a device on a ices
node. The key should either be a device
alias defined in the HardwareProfile or
the name of the device published by the
OS. The value of each key must be a
mapping with the following keys

labels A mapping of key/value strings providing
generic labels for the device

bootdrive: true

volume_group A volume group name to add the device
to as a physical volume. Incompatible
with the partitions specification

 partitions* A sequence of mappings listing the
partitions to be created on the device. In
compatible with volume_group specificati
on

name Metadata describing the partition in the
topology

'root

size The size of the partition. '30g'

part_uuid A UUID4 formatted UUID to assign to
the partition. If not specified, one will be
generated

 volume_group name assigned to a volume group

 labels

 bootable Boolean whether this partition should be
the bootable device

true

filesystem An optional mapping describing how the
partition should be formatted and
mounted

mountpoint Where the filesystem should be
mounted. If not specified the partition will
be left as a raw device

'/'

fstype The format of the filesystem. Defaults to
ext4

'ext4'

mount_options fstab style mount options. Default is
‘defaults’

'defaults'

fs_uuid A UUID4 formatted UUID to assign to

the filesystem. If not specified, one will
be generated

fs_label A filesystem label to assign to the
filesystem. Optional.

volume_groups

vg_uuid A UUID4 format uuid applied to the
volume group. If not specified, one is
generated

logical_volumes* A sequence of mappings listing the
logical volumes to be created in the
volume

name Used as the logical volume name

lv_uuid A UUID4 format uuid applied to the
logical volume: If not specified, one is
generated

size The logical volume size

 filesystem A mapping specifying how the logical
volume should be formatted and mounted

mountpoint Same as above.

fstype

 mount_options

 fs_uuid

fs_label

 platform Define the operating system image and
kernel to use as well as customize the
kernel configuration

image Image name 'xenial'

kernel Kernel Version 'hwe-16.04'

kernel_params mapping. Each key should either be a A
string or boolean value. For boolean true
values, the key will be added to the

kernel parameter list as a flag. For string
values, the key:value pair will be added
to the kernel parameter list as key=value

kernel_package: linux-'
image-4.15.0-46-
generic'

oob The ipmi OOB type requires additional
configuration to allow OOB management

network node network used for OOB access.The oop

 account Valid account that can access the BMC
via IPMI over LAN

root

 credential Valid password for the account that can
access the BMC via IPMI over LAN

root

spec host_profile Name of the HostProfile that this profile
adopts and overrides values from.

defaults

metadata

owner_data

<software-
component-name>
enabled/disabled

openstack-l3-agent: en
abled

Nodes

This is defined under Baremetal. Node network attachment can be described in a HostProfile or a BaremetalNode document. Node addressing is
allowed only in a BaremetalNode document.

Hence, this focuses mostly on addressing. Nodes adopt all values from the profile that it is mapped to and can then again override or append any
 configuration that is specific to that node.

A separate schema, as described by the following table, is created for each node of the deployment.

Parameter
Category

Subcategory-1 Subcategory-2 Subcategory-3 Subcategory-4 Description Example Value

addressing* Specifies IP
address
assignments for
all the networks.
Networks can be
omitted from this
paramenter, in

which case the
interface attached
to the omitted
network is
configured as link
up with no address

address It defines a static
IP address or dhcp
for each network.

A node should
have a configured
layer 3 interface
on.

10.10.100.12 or
dhcp

network The Network
name.

oob, private,
mgmt, pxe, etc.

host_profile Which host profile
to assign to this
node.

cp-intel-pod10

metadata

tags 'masters'

rack pod10-rack

*: Array of Values.

Network Definition

Network

Parameter Subcategory Description Example
Value

cidr Classless inter-domain routing address for the network 172.16.3.0
/24

ranges* Defines a sequence of IP addresses within the defined cidr. Ranges cannot overlap.

type The type of address range (static, dhcp, reserved) static

start The starting IP of the range, inclusive. 172.16.3.
15

end The last IP of the range, inclusive 172.16.3.
200

dns Used for specifying the list of DNS servers to use if this network is the primary network for the node.

domain A domain that can be used for automated registration of IP addresses assigned from this Network opnfv.org

servers A comma-separated list of IP addresses to use for DNS resolution 8.8.8.8

dhcp_relay DHCP relaying is used when a DHCP server is not attached to the same layer 2 broadcast domain as nodes that are
being PXE booted. The DHCP requests from the node are consumed by the relay (generally configured on a top-of-
rack switch) which then encapsulates the request in layer 3 routing and sends it to an upstream DHCP server. The
Network spec supports a dhcp_relay key for Networks that should relay DHCP requests.

self_ip

upstream_target IP address must be a host IP address for a MaaS rack controller. The upstream target network must have a defined
DHCP address range

mtu Maximum transmission unit for this Network. Must be equal or less than the mtu defined for the hosting NetworkLink. 1500

vlan If a Network is accessible over a NetworkLink using 802.1q VLAN tagging, the vlan attribute specified the VLAN tag
for this Network. It should be omitted for non-tagged Networks

'102'

routedomain Logical grouping of L3 networks such that a network that describes a static route for accessing the route domain will
yield a list of static routes for all the networks in the routedomain. See the description of routes below for more
information

storage

routes* Defines a list of static routes to be configured on nodes attached to this network. The routes can be defined in one of
two ways: an explicit destination subnet where the route will be configured exactly as described or a destination rout
edomain where Installer will calculate all the destination L3 subnets for the routedomain and add routes for each of
them using the gateway and metric defined.

subnet Destination CIDR for the route 0.0.0.0/0

gateway The gateway IP on this Network to use for accessing the destination 172.16.3.1

metric The metric or weight for this route 10

routedomain Use this route’s gateway and metric for accessing networks in the defined routedomain. storage

Network Link

The NetworkLink defines layer 1 and layer 2 attributes that should be in-sync between the node and the switch. Each link can support a single untagged
VLAN and 0 or more tagged VLANs

Parameter Subcategory Description Example
Value

bonding Describes combining multiple physical links into a single logical link

mode What bonding mode to configure

disabled: Do not configure a bond
802.3ad: Use 802.3ad dynamic aggregation (aka LACP)
active-backup: Use static active/standby bonding
balanced-rr: Use static round-robin bonding

802.3ad

hash The link selection hash. Supported values are layer3+4, layer2+3, layer2. layer3+4

peer_rate How frequently to send LACP control frames. Supported values are fast and slow. fast

mon_rate Interval between checking link state in milliseconds. 100

up_delay Delay in milliseconds between a link coming up and being marked up in the bond. > mon_rate 200

down_delay Delay in milliseconds between a link going down and being marked down in the bond. > mon_rate 200

mtu Maximum transmission unit for the link. It must be equal to or greater than the MTU of any VLAN interfaces using
the link.

9000

linkspeed Physical layer speed and duplex. auto

trunking How multiple layer 2 networks will be multiplexed on the link

mode Can be disabled for no trunking or 802.1q for standard VLAN tagging 802.1q

default_network For mode: disabled, this is the single network on the link. For mode: 802.1q this is optionally the network
accessed by untagged frames.

allowed_netwo
rks*

A sequence of network names listing all networks allowed on this link. Each Network can be listed on one and only
one NetworkLink

Software

OpenStack services are deployed as containers. To manage these containers, various container management platforms such as Kubernetes are used.

Airship uses OpenStack on Kubernetes (OOK). For deployment/configuration of services/applications/pods (in this case OpenStack, monitoring, and so
on) on Kubernetes, users have two options: (a) Kolla-Kubernetes or (b) OpenStack Helm. Both options use Helm for packaging the Kubernetes definitions
for each service. However, OpenStack Helm uses Helm charts, whereas Kolla-Kubernetes uses Ansible for deployment/orchestration. Airship uses Helm
charts. Accordingly, under software, user configurations fall under two important categories: Charts and Configurations.

Charts

Kubernetes

For a Kubernetes system (Namespace: kube-system), user just has to do some substitutions for the control nodes. In this definition, a list of control plane
nodes (genesis node and master node list) is created. Calico etcd runs on these nodes, and certs are be required. It is assumed that Airship sites will have
3 control plane nodes, so this should not need to change for a new site. User only has to perform some substitutions.

First he has to create a mapping. The mapping would be:

Source

(as mentioned in commonaddress.yaml)

Destination

.genesis.hostname .values.nodes[0].name

.masters[0].hostname .values.nodes[1].name

1.
a.

2.
3.

.masters[1].hostname .values.nodes[2].name

Source Destination

certificate of calico-etcd-<podname>-node1 .values.nodes[0].tls.client.cert

certificate-key calico-etcd-<podname>-node1 .values.nodes[0].tls.client.key

certificate of calico-etcd-<podname>-node1-peer .values.nodes[0].tls.peer.cert

certificate-key of calico-etcd-<podname>-node1-peer .values.nodes[0].tls.peer.key

certificate of calico-etcd-<podname>-node2 .values.nodes[1].tls.client.cert

certificate-key calico-etcd-<podname>-node2 .values.nodes[1].tls.client.key

certificate of calico-etcd-<podname>-node2-peer .values.nodes[1].tls.peer.cert

certificate-key of calico-etcd-<podname>-node2-peer .values.nodes[1].tls.peer.key

certificate of calico-etcd-<podname>-node3 .values.nodes[2].tls.client.cert

certificate-key calico-etcd-<podname>-node3 .values.nodes[2].tls.client.key

certificate of calico-etcd-<podname>-node3-peer .values.nodes[2].tls.peer.cert

certificate-key of calico-etcd-<podname>-node3-peer .values.nodes[2].tls.peer.key

Undercloud Platform

TBA

Ceph

TBA

OpenStack Helm Infra

This includes configuring parameters of various infrastructure components, such as Elasticsearch, Fluentbit, Fluentd, Grafana, Ingress, Mariadb, and
Prometheus.

User can leave all the values as is.

OpenStack Helm - Compute Kit

Under this, there are three important configurations -

Libvirt:
Network Backend: Open vSwitch or SR-IOV.

Neutron
Nova

Tenant-Ceph

Config

Under this configuration, user can only set the region name for OpenStack Helm.

Parameter Subcategory Description Example Value

osh

region_name The region name to use. Typically Site name is provided. intel-pod10

PKI-Catalog

Parameter Subcategory-1 Subcategory-2 Description Example Value

certificate_authorities

description

certificates

document_name

description

common_name

hosts

groups

keypairs

name

description

Secrets

Publickeys of the Users.

Path: site/<site_name>/secrets/publickey/<username>_ssh_public_key.yaml

The public key of the user is added as 'data'.

Passphrases of the users

Path: site/<site_name>/secrets/publickey/<username>_crypt_password.yaml

Put a passphrase for the user as 'data'.

Boot Actions

Boot actions can be more accurately described as post-deployment file placement. This file placement can be leveraged to install actions for servers to
take after the permanent OS is installed and the server is rebooted. Including custom or vendor scripts and a SystemD service to run the scripts on first
boot or on all boots allows almost any action to be configured.

Parameter Subcategory-
1

Subcategory-
2

Description Example
Value

signaling Whether to expect a signal at the completion of this boot action. If set to true for a boot
action that does not send a signal, it will extend the deployment step and consider the boot
action failed.

true

assets list of data assets.A

items

path If type is unit, it is a SystemD unit, such as a service, that will be saved to path and enabled
via systemctl enable [filename]

location (see data)

type boot action framework supports assets of several types - 'unit','file', 'pkg_list' . pkg_list is a list
of packages

'file'

data The asset contents can be sourced from either the in-document data field of the asset
mapping or dynamically generated by requesting them from a URL provided in location.

location_pipeline The boot action framework supports pipelines to allow for some dynamic rendering. There
are separate pipelines for the location field to build the URL that referenced assets should
be sourced from and the data field (or the data sourced from resolving the location field).

template

data_pipeline The location string will be passed through the location_pipeline before it is queried.
This response or the data field will then be passed through the data_pipeline. The data
entity will start the pipeline as a bytestring which means that if it is defined in the data field, it
is first encoded into a bytestring. Below are pipeline segments available for use.

For 'template' - Treat the data element as a Jinja2 template and apply a node context to it.
The defined context available to the template is below.

base64_encode',
'template',
'base64_decode',
'utf8_encode','utf
8_decode'

permissions If type is file, it is saved to the filesystem at path and set with permissions.

node_filter Filter for selecting to which nodes this boot action will apply. If no node filter is included, all
nodes will receive the boot action. Otherwise, it is only the nodes that match the logic of the
filter set.

filter_set_type Either intersection|union union

filter_set items

filter_type Same as filter_set_type.

node_names Names of the node.

node_tags Node tags

node_labels Node labels.

rack_names Rack Names

rack_labels Rack Labels

Rack

Parameter Subcategory Description Example Value

tor_switches For one or more switches, define the following.

mgmt_ip IP address of the management port 1.1.1.1

sdn_api_uri The URI for SDN based configuration https://polo.opnfv.org
/switchmgmt?
switch=switch01name

location

clli Common Language Location Identifier Code - used within the North American telecommunications
industry to specify the location and function of telecommunications equipment.

HSTNTXMOCG0

grid The grid code. EG12

local_network
s*

Networks wholly contained to this rack. Nodes in a rack can only connect to local_networks of that
rack

pxe_network1

Region

Parameter Subcategory Description Example Value

tag_definitions*

tag

definition_type lshw_xpath

definition

authorized_keys*

repositories List of SSH keys which MaaS will register for the built-in "ubuntu" account during the PXE process.

This list is populated by substitution, so the same SSH keys do not need to be repeated in multiple manifests.

remove_unlisted Whether to remove the unlisted packages true

repo_type+

url+

distributions

subrepos

components

gpgkey

arches+

options

Generating Certificates

Generating certificates involves the following steps:

1. Get airship treasuremap to the jumpserver. git clone https://github.com/airshipit/treasuremap.git
2. Copy type/cntt folder from opnfv-airship repo to cloned airship treasuremap repo under type
3. mv site defn. For pod10 to treasuremap
4. sudo tools/airship pegleg site -r /target collect intel-pod10 -s intel-pod10_collected
5. mkdir intel-pod10_certs
6. sudo tools/airship promenade generate-certs -o /target/intel-pod10_certs /target/intel-pod10_collected/*.yaml
7. cp intel-pod10_certs/*.yaml site/intel-pod10/secrets/certificates/
8. mv site/intel-pod10 ../airship/site/

Publishing
TBA

https://github.com/airshipit/treasuremap.git

	Airship Manifest Creation For New Sites

