
Kaloom™ Copyright 2021

Kubernetes
Networking
Semantics
Per Andersson

Kaloom™ Copyright 2021

Pod and Workloads

Pod: Pod is a collection of
containers that can run on a host.
This resource is created by clients
and scheduled onto hosts.

ReplicaSet: ReplicaSet ensures
that a specified number of pod
replicas are running at any given
time.

Deployment: Deployment enables
declarative updates for Pods and
ReplicaSets.

DaemonSet: DaemonSet
represents the configuration of a
daemon set.

Job: Job represents the configuration of a
single job.

StatefulSet: StatefulSet represents a set of pods with
consistent identities. Identities are defined as:
network, storage.

CronJob: A CronJob manages time based Job, namely:
- once at a specified point in time
- repeatedly at a specified point in time

https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/

Kaloom™ Copyright 2021

Network Objects

Ingress: Ingress is a collection of rules that allow inbound connections to reach the
endpoints defined by a backend. An Ingress can be configured to give services
externally-reachable urls, load balance traffic, terminate SSL, offer name based virtual
hosting etc.

Service: Service is a named abstraction of software service (for example, mysql)
consisting of local port (for example 3306) that the proxy listens on, and the
selector that determines which pods will answer requests sent through the
proxy.

Network Policy: NetworkPolicy describes what network traffic is allowed for a set
of Pods.

EndpointSlices: Endpoints and Endpointslices are a collections of endpoints that
implement the actual service.

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/endpoint-slices/

Kaloom™ Copyright 2021

Abstraction of K8s networking
The manifest used to define Kubernetes
entities are typically free of any sort of IP
address information.
• Service
• Network Policy
• Ingress
• Pod
• Workload Resources

• Deployment
• ReplicaSet
• StatefulSet
• DaemonSet
• Job
• CronJob

The basic semantics of Kubernetes and
the information found in the manifest
defines the connectivity rules and
behavior

All entities belong to a namespace

All entities have a name that is unique in
that namespace

All entities have a unique identifier (UID)

The identity can be simplified to
type<namespace, name>
• namespace<name>
• service<namespace, name>
• networkPolicy<namespace, name>
• ingress<namespace, name>
• pod<namespace, name>
• deployment<namespace, name>
• replicaSet<namespace, name>
• daemonSet<namespace, name>
• job<namespace, name>
• cronJob<namespace, name>

Kaloom™ Copyright 2021

All pods can communicate with each other*

K8s cluster

Namespace 2Namespace 1

Kaloom™ Copyright 2021

All pods can communicate with each other*

Node 1

Namespace 1 Namespace 2

Node 2

Namespace 2Namespace 1

K8s cluster

Kaloom™ Copyright 2021

Pod lifecycle and Pod Communication

The Pod life cycle can be abstracted to
• addPod(pod<namespace, name>)

• removePod(pod<namespace, name>)

The Pod communication can be abstracted to two connection primitives
• openPodConnection(sourcePod, destinationPod, protocol, port) =>

<true, connectionId> or <false, 0>

• closePodConnection(connectionId)

A connection can be described as
• newConnection(Pod1, Pod2, protocol, port) =>

connection<connectionId, Pod1, Pod2>

• deleteConnection(connectionId)

Kaloom™ Copyright 2021

All pods can communicate with each other, if there is
Network Policy that allows it

K8s cluster

Namespace 1 Namespace 2

Kaloom™ Copyright 2021

Network Policy model

9

Pods selected by the podSelector

Namespace: Z
POD: zz01Namespace: A

POD: aa01

“podSelector”
Pods selected by the
podSelector

Ingress

From:
Selector 001

From:
Selector 011

Egress

To:
Selector 001

To:
Selector 011

Ingress Sessions

Permitted Sessions

Pods selected by either the
podSelector, nameSpaceSelector or both

Kaloom™ Copyright 2021

Network Policy examples
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: default-deny-ingress
spec:

podSelector: {}
policyTypes:
- Ingress

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: allow-all-ingress
spec:

podSelector: {}
ingress:
- {}
policyTypes:
- Ingress

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: default-deny-egress
spec:

podSelector: {}
policyTypes:
- Egress

apiVersion: networking.k8s.io/v1 - Ingress
kind: NetworkPolicy
metadata:

name: allow-all-egress
spec:

podSelector: {}
egress:
- {}
policyTypes:
- Egress

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: default-deny-all
spec:

podSelector: {}
policyTypes:
- Ingress
- Egress

apiVersion: networking.k8s.io/v1 - Ingress
kind: NetworkPolicy
metadata:

name: allow-all
spec:

podSelector: {}
ingress:

- {}
egress:
- {}
policyTypes:
- Ingress
- Egress

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: web-deny-all
spec:

podSelector:
matchLabels:

app: web
ingress: []
policyTypes:
- Ingress
- Egress

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: web-allow-all-ns-monitoring
namespace: default

spec:
podSelector:

matchLabels:
app: web

ingress:
- from:
chooses all pods in namespaces
labelled with team=operations

- namespaceSelector:
matchLabels:

team: operations
chooses pods with type=monitoring

podSelector:
matchLabels:

type: monitoring

Kaloom™ Copyright 2021

Network Policy
The NetworkPolicy spec has all the information needed to define a particular network policy in the given namespace.

• podSelector: Each NetworkPolicy includes a podSelector which selects the grouping of pods to which the policy applies. An
empty podSelector , ”podSelector: {} selects all pods in the namespace.

• policyTypes: Each NetworkPolicy includes a policyTypes list which may include either Ingress, Egress, or both. The policyTypes
field indicates whether or not the given policy applies to ingress traffic to selected pod, egress traffic from selected pods, or
both. If no policyTypes are specified on a NetworkPolicy then by default Ingress will always be set and Egress will be set if the
NetworkPolicy has any egress rules.

• ingress: Each NetworkPolicy may include a list of whitelist ingress rules. Each rule allows traffic which matches both the from and
ports sections.

• egress: Each NetworkPolicy may include a list of whitelist egress rules. Each rule allows traffic which matches both the to and
ports sections.

to and from selectors, there are four kinds of selectors that can be specified in an ingress from section or egress to
section:

• podSelector: This selects particular Pods in the same namespace as the NetworkPolicy which should be allowed as ingress
sources or egress destinations.

• namespaceSelector: This selects particular namespaces for which all Pods should be allowed as ingress sources or egress
destinations.

• namespaceSelector and podSelector: A single to/from entry that specifies both namespaceSelector and podSelector selects
particular Pods within particular namespaces.

• ipBlock: This selects particular IP CIDR ranges to allow as ingress sources or egress destinations. These should be cluster-external
IPs, since Pod IPs are ephemeral and unpredictable.

11

https://kubernetes.io/docs/concepts/services-networking/network-policies/

Kaloom™ Copyright 2021

Abstract Network Policy Filter System
addNetworkPolicy(

networkPolicy<namespace,
name ,
policy)

updateNetworkPolicy(
networkPolicy<namespace,

name ,
policy)

removeNetworkPolicy(
networkPolicy<namespace, name)

allowNewConnectionFromPod(
destinationPod,
sourcePod,
protocol,
destinationPort)

allowNewConnectionToPod(
sourcePod,
destinationPod,
protocol,
destinationPort)

The ipBlock part of to and from selectors is ignored for
now

This policy filter system is not dependent on
• The number of pod replicas
• The number of pod interfaces
• The number of pod network attachments
• Which interface an ip address is configured too

The policy filter system is dependent on
• Pod manifests
• Pod labels
• Label selectors in the Network Policies

It is only updated when
• policy filters are added, updated or removed
• Labels used in policy filters are changed

It is easy to extend with functionality
• show how policies are related
• which policies that applies towards a

• namespace

• Service

• Workload entities

• individual pods

Kaloom™ Copyright 2021

Pod Communication with Network Policies
The allowNewConnectionToPod is
used to check outgoing egress
connectivity from the “sourcePod”
• This is done by matching the

“sourcePod” towards the NetworkPolicy
PodSelector and the “destinationPod”,
“protocol” and “port” towards the
NetworkPolicy egress to rules

The allowNewConnectionToPod is
used to check incomming ingress
connectivity towards the
“destinationPod”
• This is done by matching the

“destinationPod” towards the
NetworkPolicy PodSelector and the
“sourcePod”, “protocol” and “port”
towards the NetworkPolicy ingress from
rules

openPodConnection must be updated to
support the NW policy check

openPodConnection(sourcePod, destinationPod, protocol, port)
{

if
allowNewConnectionToPod(

sourcePod,
destinationPod,
protocol,
destinationPort)

&&
allowNewConnectionFromPod(

destinationPod,
sourcePod,
protocol,
destinationPort)

then
connection = newConnection(sourcePod,

destinationPod,
protocol,
destinationPort)

return <true, connection.connectionId>
else

return <false, 0>
}

Kaloom™ Copyright 2021

Simple POD Network Policy reference model

14

• Connection Tracker
• Any packet matching an existing connection can pass through to its

destination
• Any packet arriving from the Ingress or Egress Policy Filter is sent to

its destination

• Any packet arriving from eth0 that does not match an existing
connection and is classified as able to initiate a new connection is
passed to the Egress Policy Filter or otherwise dropped.

• Any packet arriving from nth0 that does not match an existing
connection and is classified as able to initiate a new connection is
passed to the Ingress Policy Filter or otherwise dropped

• Ingress Policy Filter
• The packet is checked if it matches any of the from selectors, if

successful, the new bi-directional connection is registered in the
Connection Tracker and the packet is send back to the connection
tracker to be forwarded to its destination , other wise the packet is
dropped

• Egress Policy Filter
• The packet is checked if it matches any of the to selectors, if

successful, the new bi-directional connection is registered in the
Connection Tracker and the packet is send back to the connection
tracker to be forwarded to its destination , other wise the packet is
dropped

• The source port is never used in filters, it is typically
ephemeral and requires more complex expressions to
specify

K8s cluster:

Node:

Connection Tracker

Sanity Filter

Egress Policy Filter

To: Selector

n
th

0

Sanity Filter

Ingress Policy Filter

From:
Selector

Sanity Filter

POD 1 netns

eth0lo

K8s namespace: A
POD: aa01

Sanity Filter

Kaloom™ Copyright 2021

All pods can communicate with each other, if there is
Network Policy that allows it

Node 1

Namespace 1 Namespace 2

Node 2

Namespace 2Namespace 1

K8s cluster

Kaloom™ Copyright 2021

Services

K8s cluster
Define a Service

apiVersion: v1
kind: Service
metadata:

name: my-service
spec:

selector:
app: my-app

ports:
-protocol: TCP

port: 231
targetPort: 123

Define a Deployment

apiVersion: apps/v1
kind: Deployment
metadata:

name: my-app-deployment
spec:

selector:
matchLabels:

app: my-app
replicas: 3
template:

metadata:
labels:

app: my-app
spec:

containers:
- name: my-app

image: my-app-1.2.3
ports:

- containerPort: 123

Kaloom™ Copyright 2021

Service lifecycle and Service to Pod mapping
Service is the basic construct used to load balance Kubernetes applications.
• It is built in and works in conjunction with workload resources like Deployment, StatefulSet

and DaemonSet to provide application scalability and load balancing.
• A Service is mapped to a set of Pods by using label and label selectors, the mapping can be

simplified though by defining a Service <-> Pod mapping service

The Service life cycle can be abstracted to
• addService(service<namespace, name>)
• removeService(servcice<namespace, name>)

The mapping service can be abstracted to six primitives
• addPod2ServiceMapping(pod<namespace, name>, service<namespace, name>)
• removePod2ServiceMapping(pod<namespace, name>, service<namespace, name>)
• removePod2ServiceMappings(pod<namespace, name>)
• removeService2PodMappings(service<namespace, name>)
• lookupPod2ServiceMappings(pod<namespace, name>) => {service<namespace, name>*}
• lookupService2PodMappings(Service<namespace, name>) => {pod<namespace, name>*}

Kaloom™ Copyright 2021

Pod and Service lifecycle updates and service to pod
communication

Pod lifecycle: removePod must clean up the
Service mappings

removePod(pod<namespace, name>)
{

removePod2ServiceMappings(pod<namespace, name>)
}

Service lifecycle: removeService must clean
up the Pod mappings

removeService(service<namespace, name>)
{

removeService2PodMappings(service<namespace, name>)
}

Service to pod communication can be
abstracted to one primitive

• openServiceConnection(
sourcePod,
destinationService,
protocol,
port)

=> <true, connectionId> or <false, 0>

OpenServiceConnection can then
specified as

openServiceConnection(sourcePod,

destinationService,
protocol,
port)

{
podSet pods =
lookupService2PodMappings(destinationService)

if isEmptySet(pods) then
return <false, 0>

else
return openPodConnection(sourcePod,

pods.SelectOnePod(),
protocol,
port)

}

Kaloom™ Copyright 2021

Simple POD Network Policy reference model

19

• Connection Tracker
• Any packet matching an existing connection can pass through to its destination

• Any packet arriving from the Ingress or Egress Policy Filter is sent to its
destination

• Any packet arriving from eth0 that does not match an existing connection and is
classified as able to initiate a new connection is passed to the Egress Policy Filter
or otherwise dropped.

• Any packet arriving from nth0 that does not match an existing connection and is
classified as able to initiate a new connection is passed to the Ingress Policy Filter
or otherwise dropped

• Service Mapper
• The packets are matched against the service definitions, if one is found then one

of the pod instances in the endpoints list is selected as the destination for the
new connection

• The packet is checked by the Egress Policy Filter, using selected pod instance as
the destination pod, , if successful, the new bi-directional session is registered in
the Connection Tracker and the packet is send back to the connection tracker to
be forwarded to its destination , other wise the packet is dropped

• Ingress Policy Filter
• The packet is checked if it matches any of the from selectors, if successful, the

new bi-directional connection is registered in the Connection Tracker and the
packet is send back to the connection tracker to be forwarded to its destination ,
other wise the packet is dropped

• Egress Policy Filter
• The packet is checked if it matches any of the to selectors, if successful, the new

bi-directional connection is registered in the Connection Tracker and the packet is
send back to the connection tracker to be forwarded to its destination , other
wise the packet is dropped

• The source port is never used in filters, it is typically ephemeral and
requires more complex expressions to specify

K8s cluster:

Node:

Connection Tracker

Sanity Filter

Egress Policy Filter

To: Selector

n
th

0

Sanity Filter

Ingress Policy Filter

From:
Selector

Sanity Filter

POD 1 netns

eth0lo

K8s namespace: A
POD: aa01

Service Mapper

Service: A
Endpoints []

Sanity Filter

Kaloom™ Copyright 2021

Basic Kubernetes Network Semantics

The basic Network semantics can be summarized in
• All Pods can communicate with each other, if there is a network policy rule that allows

it

• The Network Policy regulate connectivity between Pods

• A Service can load balance connectivity towards a set of Pods

Kaloom™ Copyright 2021

Summary Pod and Service Abstractions
Pod lifecycle

• addPod(pod<namespace, name>)

• removePod(pod<namespace, name>)

Service lifecycle
• addService(service<namespace, name>)

• removeService(servcice<namespace, name>)

Connection lifecyle
• newConnection(Pod1, Pod2, protocol, port) =>

connection<connectionId, Pod1, Pod2>

• deleteConnection(connectionId)

Pod Communication
• openPodConnection(sourcePod,

destinationPod,
protocol,
port) =>

<true, connectionId> or <false, 0>

Service Communication
• openServiceConnection(sourcePod,

destinationService,
protocol,
port) =>

<true, connectionId> or <false, 0>

Pod to Service mapping
• addPod2ServiceMapping(pod<namespace, name>,

service<namespace, name>)
• removePod2ServiceMapping(pod<namespace, name>,

service<namespace, name>)

• removePod2ServiceMappings(pod<namespace, name>)

• removeService2PodMappings(service<namespace, name>)
• lookupPod2ServiceMappings(pod<namespace, name>) =>

{service<namespace, name>*}

• lookupService2PodMappings(Service<namespace, name>) =>
{pod<namespace, name>*}

Kaloom™ Copyright 2021

Abstract Network Policy Filter System
Network Policy primitives

• addNetworkPolicy(
networkPolicy<namespace, name , policy)

• updateNetworkPolicy(
networkPolicy<namespace, name , policy)

• removeNetworkPolicy(
networkPolicy<namespace, name)

• allowNewConnectionFromPod(
destinationPod,
sourcePod,
protocol,
destinationPort)

• allowNewConnectionToPod(
sourcePod,
destinationPod,
protocol,
destinationPort)

• allowNewConnectionFromIpAddress(
sourceIpAddress,
destinationPod,
protocol,
destinationPort)

• allowNewConnectionToIpAddress(
sourcePod,
destinationIpAddress,
protocol,
destinationPort)

This policy filter system is not dependent on
• The number of pod replicas
• The number of pod interfaces
• The number of pod network attachments
• Which interface an ip address is configured to

The policy filter system is dependent on
• Pod manifests
• Pod labels
• Label selectors in the Network Policies

It is only updated when
• policy filters are added, updated or removed
• Labels used in policy filters are changed

It is easy to extend with functionality
• show how policies are related
• which policies that applies towards a

• namespace
• service
• workload entity
• individual pods

Kaloom™ Copyright 2021

Definition of primitives
removePod

removePod(pod<namespace, name>)
{

removePod2ServiceMappings(pod<namespace, name>)
removePod2AddressMappings(pod<namespace, name>)

}

removeService
removeService(service<namespace, name>)
{

removeService2PodMappings(service<namespace, name>)
removeService2AddressMappings(service<namespace, name>)

}

openServiceConnection
openServiceConnection(sourcePod,

destinationService,
protocol,
port)

{
podSet pods =
lookupService2PodMappings(destinationService)
if isEmptySet(pods) then {

return <false, 0>
} else {

return openPodConnection(sourcePod,
pods.SelectOnePod(),
protocol,
port)

}
}

openPodConnection
openPodConnection(sourcePod, destinationPod, protocol, port)
{

if
allowNewConnectionToPod(

sourcePod,
destinationPod,
protocol,
destinationPort)

&&
allowNewConnectionFromPod(

destinationPod,
sourcePod,
protocol,
destinationPort)

then

connection = newConnection(sourcePod,

destinationPod,

protocol,
destinationPort)

return <true, connection.connectionId>

else
return <false, 0>

}

Kaloom™ Copyright 2021

Extend model with support for single network and pods
with single Network Attachment with single IP address

Every Pod should have one IP address added to the eth0 interface that is
attached to the common network

Every Service is assigned one Virtual IP address

Network Policy must support the IpBlock in egress and ingress rules

Add support for connectivity to and from cluster external entities

Kaloom™ Copyright 2021

Networking with SNAT and external load balancer

K8s cluster

Kaloom™ Copyright 2021

Simple POD Network Policy reference model

26

• Connection Tracker

• Any packet matching an existing connection can pass through to its destination

• Any packet arriving from the Ingress or Egress Policy Filter is sent to its destination

• Any packet arriving from eth0 that does not match an existing connection and is classified as able to
initiate a new connection is passed to the Egress Policy Filter or otherwise dropped.

• Any packet arriving from nth0 that does not match an existing connection and is classified as able to
initiate a new connection is passed to the Ingress Policy Filter or otherwise dropped

• Sanity Filter

• All packets that are received from eth0 are checked to ensure that the source IP address is assigned
to either eth0 or lo

• Service Mapper

• All packets arriving are checked by the sanity filter to ensure that the destination IP address is an
address that is a service address

• The packets are matched against the service definitions, if one is found then one of the pod instances
in the endpoints list is selected as the destination for the new connection

• The packet is checked by the Egress Policy Filter, using selected pod instance address as the
destination address, , if successful, the new bi-directional session is registered in the Connection
Tracker and the packet is send back to the connection tracker to be forwarded to its destination,
other wise the packet is dropped

• Ingress Policy Filter

• All packets arriving are checked by the sanity filter to ensure that the destination IP address is an
address that is assigned to either eth0 or lo

• The packet is checked if it matches any of the from selectors, if successful, the new bi-directional
session is registered in the Connection Tracker and the packet is send back to the connection tracker
to be forwarded to its destination , other wise the packet is dropped

• Egress Policy Filter

• All packets arriving are checked by the sanity filter to ensure that the source IP address is a pod IP
address assigned to eth0

• The packet is checked if it matches any of the to selectors, if successful, the new bi-directional session
is registered in the Connection Tracker and the packet is send back to the connection tracker to be
forwarded to its destination , other wise the packet is dropped

K8s cluster:

Node:

Connection Tracker

Sanity Filter

Egress Policy Filter

To: Selector

n
th

0

Sanity Filter

Ingress Policy Filter

From:
Selector

Sanity Filter

POD 1 netns

eth0lo

K8s namespace: A
POD: aa01

Service Mapper

Service: A
Endpoints []

Sanity Filter

POD IP :2001:db80:aabb:1001:
000a:0000:aa01:1234/64
10.10.1.101

Kaloom™ Copyright 2021

Map ip addresses to Pod And Services

Add a mapping service from Pod to ip addresses
• addAddress2PodMapping(ipAddress, pod<namespace, name>)

• removeAddress2PodMapping(ipAddress, pod<namespace, name>)

• removePod2AddressMappings(pod<namespace, name>)

• lookupPod2AddressMappings(pod<namespace, name>) => {ipAddress*}

• lookupAddress2PodMapping(ipAddress) => {pod<namespace, name>?}

Add a mapping service from Service to ip addresses
• addAddress2ServiceMapping(ipaddress, service<namespace, name>)

• removeAddress2ServiceMapping(ipaddress , service<namespace, name>)

• removeService2AddressMappings(service<namespace, name>)

• lookupService2AddressMappings(service<namespace, name>) => {ipAddress*}

• lookupAddress2ServiceMapping(ipAddress => {service<namespace, name>?}

Kaloom™ Copyright 2021

New primitives and lifecycle updates
Communication must be extended with
two new primitives

• openConnectionWithIpAddresses(sourceIpAddress,
destinationIpAddress,
protocol,
port) => <true, connectionId> or <false, 0>

• newConnection(Pod1, ipAddress, protocol, port) =>
connection<connectionId, Pod1, Pod2>

Network Policy system must be extended
with two more primitives

• allowNewConnectionFromIpAddress(
sourceIpAddress,
destinationPod,
protocol,
destinationPort)

• allowNewConnectionToIpAddress(
sourcePod,
destinationIpAddress,
protocol,
destinationPort)

Pod lifecycle: removePod must clean up the
Address mappings

removePod(pod<namespace, name>)
{

removePod2ServiceMappings(pod<namespace, name>)
removePod2AddressMappings(pod<namespace, name>

}

Service lifecycle: removeService must clean up
the Address mappings

removeService(service<namespace, name>)
{

removeService2PodMappings(service<namespace, name>)
removeService2AddressMappings(service<namespace, name>)

}

Kaloom™ Copyright 2021

Definition of openConnectionFromIpAddresses
openConnectionFromIpAddresses(

sourceIpAddress,
destinationIpAddress,
protocol,
port)

{
// find out if addresses maps to pod or services
podSet sourcePod = lookupAddress2PodMapping(sourceIpAddress)
serviceSet destService = lookupAddress2ServiceMapping(destinationIpAddress)
podSet destPod

if destService.isEmpty() then {// find out if destination address maps to a pod
destPod = lookupAddress2PodMapping(destinationIpAddress)

} else {
destPod = lookupService2PodMappings(destService.selectOnePod())

}
connection con
if destPod.isEmpty() && sourcePod.isNotEmpty() &&

allowNewConnectionToIpAddress(sourcePod[0],
destinationIpAddress,
protocol,
destinationPort) then

con = newConnection(sourcePod[0],
destinationIpAddress,
protocol,
destinationPort)

if sourcePod.isEmpty() then {
if allowNewConnectionFromIpAddress(sourceIpAddress,

destPod[0],
protocol,
destinationPort) then

con = newConnection(destPod[0],
sourceIpAddress,
protocol,
destinationPort)

} else {
if allowNewConnectionFromPod(sourcePod[0],

destPod[0],
protocol,
destinationPort) then

con = newConnection(sourcePod[0],
destPod[0],
protocol,
destinationPort)

}

if con.notEmpty() then
return <true, connection.connectionId>

else
return <false, 0>

}

Kaloom™ Copyright 2021

Where to go from here

Step 1: Multi Network and multi network attachments

Step 2: Overlapping ip address spaces

Step 3: Service load balancing for secondary networks

Step 4: Service chaining

Kaloom™ Copyright 2021

Step 1:Extend model with support for multi network and pods with
multi–Network Attachments with multiple IP addresses

A Pod can have multiple network attachments towards one or more
networks

A Pod can have one or more ip addresses assigned to each Network
attachment

Kaloom™ Copyright 2021

Let's look at openConnectionFromIpAddresses again
openConnectionFromIpAddresses(

sourceIpAddress,
destinationIpAddress,
protocol,
port)

{
// find out if addresses maps to pod or services
podSet sourcePod = lookupAddress2PodMapping(sourceIpAddress)
serviceSet destService = lookupAddress2ServiceMapping(destinationIpAddress)
podSet destPod

if destService.isEmpty() then {// find out if destination address maps to a pod
destPod = lookupAddress2PodMapping(destinationIpAddress)

} else {
destPod = lookupService2PodMappings(destService.selectOnePod())

}
connection con
if destPod.isEmpty() && sourcePod.isNotEmpty() &&

allowNewConnectionToIpAddress(sourcePod[0],
destinationIpAddress,
protocol,
destinationPort) then

con = newConnection(sourcePod[0],
destinationIpAddress,
protocol,
destinationPort)

if sourcePod.isEmpty() then {
if allowNewConnectionFromIpAddress(sourceIpAddress,

destPod[0],
protocol,
destinationPort) then

con = newConnection(destPod[0],
sourceIpAddress,
protocol,
destinationPort)

} else {
if allowNewConnectionFromPod(sourcePod[0],

destPod[0],
protocol,
destinationPort) then

con = newConnection(sourcePod[0],
destPod[0],
protocol,
destinationPort)

}

if con.notEmpty() then
return <true, connection.connectionId>

else
return <false, 0>

}

Important to understand that everything is based on that
• Addresses are unique
• An address can only be assigned once

From that it is possible to conclude several interesting
things

• It does not matter how many addresses that are mapped to a
Pod!!!

• The only thing that matters is that lookupAddress2PodMapping
only can return zero or one Pod

• The number of addresses returned by
lookupPod2AddressMapping is irrelevant for the Kubernetes
Network Semantics

• But it depends on the network topology for service to pod mapping*

The Kubernetes Network semantics is not changed by
• The number networks used in the system
• The number of network attachments in a pod
• The number of networks attached to a pod
• The number of IP addresses assigned to an interface/network

attachment

That said, the network environment in any multi homed
Pod can become very challenging

• How to handle routes, VRF, overlapping address spaces…..

Kaloom™ Copyright 2021

Two scenarios

L3 reachability between all networks (type 1)
• Network Policy model works for all addresses on all networks

• Service lookup model works, service can be mapped to any pod address on any
network and any interface

No L3 reachability between all networks (type 2)
• Network Policy model works for all addresses on all networks

• Service lookup model only works for addresses assigned to eth0 interface in Pod
• Possible to extend service manifest with annotation to handle this. This will be defined later in

“Step 4”

Kaloom™ Copyright 2021

Multi Network type 1

K8s cluster

Namespace 1

eth0: fd05:0:0:9::1001/64
eth1: fd04:0:0:2::1001/64
eth2: fd04:0:0:7::1001/64
route: ::/0 via fd05:0:0:9::1

lo eth0 eth1 eth2

Pod 1
eth0: fd05:0:0:9::1002/64
eth1: fd04:0:0:2::1002/64
eth2: fd04:0:0:7::1002/64
route: ::/0 via fd05:0:0:9::1

lo eth0 eth1 eth2

Pod 2
eth0: fd05:0:0:9::100f/64
eth1: fd04:0:0:2::100f/64
eth2: fd04:0:0:7::100f/64
route: ::/0 via fd05:0:0:9::1

lo eth0 eth1 eth2

Pod 15

Kaloom™ Copyright 2021

Multi Network type 2

K8s cluster

Namespace 1

eth0: fd05:0:0:9::1001/64
eth1: fd04:0:0:2::1001/64
eth2: fd04:0:0:7::1001/64
route: ::/0 via fd05:0:0:9::1

lo eth0 eth1 eth2

Pod 1
eth0: fd05:0:0:9::1002/64
eth1: fd04:0:0:2::1002/64
eth2: fd04:0:0:7::1002/64
route: ::/0 via fd05:0:0:9::1

lo eth0 eth1 eth2

Pod 2
eth0: fd05:0:0:9::100f/64
eth1: fd04:0:0:2::100f/64
eth2: fd04:0:0:7::100f/64
route: ::/0 via fd05:0:0:9::1

lo eth0 eth1 eth2

Pod 15

Kaloom™ Copyright 2021

Step 2: Overlapping address space

What is an ip address domain
• How do we express it

• How do we link it into the current model?

• How is it found and known at runtime?

Kaloom™ Copyright 2021

What is an ip address domain: How do we express it?

The simplest way to describe an address domain is to say that the
addresses used within that domain are unique and well defined.

The address domain is an abstract entity, it is not part of a packet, but there
are well established conventions and rules around them

NAT type of functions can be used to translate addresses between two
domains

Routers can be used to protect a domain from receiving packets with not
wanted destination addresses

Firewalls can block packets with not wanted source or destination
addresses

Kaloom™ Copyright 2021

What is an ip address domain: How do we link it into
the current model?

When an address is assigned
• you must know which address domain/overlapping address space it belongs to

IPAM use address space
• This address space must be unique within the current domain

• do not assign addresses from the same prefix in uncoordinated way

• Interfaces are assigned ip addresses
• CNI

• DHCP

• Route Advertisement

• Interfaces are attached to networks

• Networks and IPAM in K8s are tied together through the Network Configuration Specification

The ip address domain should be added as an attribute to the CNI “Network
Configuration Specification”

https://github.com/containernetworking/cni/blob/master/SPEC.md#network-configuration

Kaloom™ Copyright 2021

What is an ip address domain: How is it found and
known at runtime?

IpAddressDomain <-> Network <-> interface <-> address
• An interface is tied to a network, the network belongs to an ip address domain

• It is therefore known which ip address domain each individual interface in a POD
belongs to, and it is easy to map which domain that should be used in lookups for
both egress and ingress filters

Add two new network constructs
• ip_address_domain<name>

• network<name, ip_address_domain_name>

Kaloom™ Copyright 2021

Ip address domain for separate address spaces

K8s cluster

Namespace 1

eth0: fd05:0:0:9::1001/64
eth1: fd04:0:0:2::1001/64
eth2: fd04:0:0:7::1001/64
route: ::/0 via fd05:0:0:9::1

lo eth0 eth1 eth2

Pod 1
eth0: fd05:0:0:9::1002/64
eth1: fd04:0:0:2::1002/64
eth2: fd04:0:0:7::1002/64
route: ::/0 via fd05:0:0:9::1

lo eth0 eth1 eth2

Pod 2
eth0: fd05:0:0:9::100f/64
eth1: fd04:0:0:2::1002/64
eth2: fd04:0:0:7::1002/64
route: ::/0 via fd05:0:0:9::1

lo eth0 eth1 eth2

Pod 15
eth0: fd05:0:0:9::100e/64
eth1: fd04:0:0:2::1001/64
eth2: fd04:0:0:7::1001/64
route: ::/0 via fd05:0:0:9::1

lo eth0 eth1 eth2

Pod 14

Network: xy1
ip-address-domain: blue

Network: ab2
ip-address-domain: blue

Network: ze4
ip-address-domain: red

Network: be5
ip-address-domain: red

Kaloom™ Copyright 2021

Pod, Service and Network Policy Abstraction with
support for multiple ip address spaces

Pod and Service Communication
• openConnectionWithIpAddresses(

sourceIpAddressSpaceName,
sourceIpAddress,
destinationIpAddressSpaceName,
destinationIpAddress,
protocol,
port) =>

<true, connectionId> or <false, 0>

Network Policy primitives
• allowNewConnectionFromIpAddress(

sourceAddressSpaceName,
sourceIpAddress,
destinationPod,
protocol,
destinationPort)

• allowNewConnectionToIpAddress(
sourcePod,
destinationIpAddressSpaceName,
destinationIpAddress,
protocol,
destinationPort)

Pod to ip addresses mapping
• addAddress2PodMapping(ipAddressSpaceName,

ipAddress,
pod<namespace, name>)

• removeAddress2PodMapping(ipAddressSpaceName,
ipAddress,
pod<namespace, name>)

• removePod2AddressMappings(pod<namespace, name>)

• lookupPod2AddressMappings(pod<namespace, name>) =>
{< ipAddressSpaceName ,ipAddress>*}

• lookupAddress2PodMapping(ipAddressSpaceName, ipAddress) =>
{pod<namespace, name>?}

Service to ip address mapping
• addAddress2ServiceMapping(ipAddressSpaceName,

ipaddress ,
service<namespace, name>)

• removeAddress2ServiceMapping(ipAddressSpaceName,
ipaddress ,
service<namespace, name>)

• removeService2AddressMappings(service<namespace, name>)

• lookupService2AddressMappings(service<namespace, name>) =>
{< ipAddressSpaceName ,ipAddress>*}

lookupAddress2ServiceMapping(ipAddressSpaceName, ipAddress) =>
{service<namespace, name>?}

Kaloom™ Copyright 2021

openConnectionFromIpAddresses with support for
multiple ip address spaces
openConnectionFromIpAddresses(

sourceIpAddress,
destinationIpAddress,
protocol,
port)

{
// find out if addresses maps to pod or services
podSet sourcePod = lookupAddress2PodMapping(sourceIpAddressSpaceName,

sourceIpAddress)
serviceSet destService = lookupAddress2ServiceMapping(destinationIpAddressSpaceName ,

destinationIpAddress)
podSet destPod

if destService.isEmpty() then {// find out if destination address maps to a pod
destPod = lookupAddress2PodMapping(destinationIpAddressSpaceName,

destinationIpAddress)
} else {

destPod = lookupService2PodMappings(destService.selectOnePod())
}
connection con
if destPod.isEmpty() && sourcePod.isNotEmpty() &&

allowNewConnectionToIpAddress(sourcePod[0],
destinationIpAddressSpaceName,
destinationIpAddress,
protocol,
destinationPort) then

con = newConnection(sourcePod[0],
destinationIpAddress,
protocol,
destinationPort)

if sourcePod.isEmpty() then {
if allowNewConnectionFromIpAddress(sourceIpAddressSpaceName,

sourceIpAddress,
destPod[0],
protocol,
destinationPort) then

con = newConnection(destPod[0],
sourceIpAddressSpaceName,
sourceIpAddress,
protocol,
destinationPort)

} else {
if allowNewConnectionFromPod(sourcePod[0],

destPod[0],
protocol,
destinationPort) then

con = newConnection(sourcePod[0],
destPod[0],
protocol,
destinationPort)

}

if con.notEmpty() then
return <true, connection.connectionId>

else
return <false, 0>

}

Kaloom™ Copyright 2021

Work in progress after this slide

