
5/28/2017 dovetail documentation

file:///Users/wenjingchu/freshcvp/dovetail/docs_output/testing_user_testspecification_highavailability/index.html 1/10

OpenStack Services HA test specification
Scope
The HA test area evaluates the ability of the System Under Test to support service continuity and recovery from
component failures on part of OpenStack controller services(“nova-api”, “neutron-server”, “keystone”, “glance-api”,
“cinder-api”) and on “load balancer” service.

The tests in this test area will emulate component failures by killing the processes of above target services, stressing
the CPU load or blocking disk I/O on the selected controller node, and then check if the impacted services are still
available and the killed processes are recovered on the selected controller node within a given time interval.

References
This test area references the following specifications:

ETSI GS NFV-REL 001

http://www.etsi.org/deliver/etsi_gs/NFV-REL/001_099/001/01.01.01_60/gs_nfv-rel001v010101p.pdf

OpenStack High Availability Guide

https://docs.openstack.org/ha-guide/

Definitions and abbreviations
The following terms and abbreviations are used in conjunction with this test area

SUT - system under test
Monitor - tools used to measure the service outage time and the process outage time
Service outage time - the outage time (seconds) of the specific OpenStack service
Process outage time - the outage time (seconds) from the specific processes being killed to recovered

System Under Test (SUT)
The system under test is assumed to be the NFVi and VIM in operation on a Pharos compliant infrastructure.

SUT is assumed to be in high availability configuration, which typically means more than one controller nodes are in
the System Under Test.

Test Area Structure
The HA test area is structured with the following test cases in a sequential manner.

Each test case is able to run independently. Preceding test case’s failure will not affect the subsequent test cases.

Preconditions of each test case will be described in the following test descriptions.

Test Descriptions

Test Case 1 - Controller node OpenStack service down - nova-api

http://www.etsi.org/deliver/etsi_gs/NFV-REL/001_099/001/01.01.01_60/gs_nfv-rel001v010101p.pdf
https://docs.openstack.org/ha-guide/


5/28/2017 dovetail documentation

file:///Users/wenjingchu/freshcvp/dovetail/docs_output/testing_user_testspecification_highavailability/index.html 2/10

Short name

opnfv.ha.tc001.nova-api_service_down

Use case specification

This test case verifies the service continuity capability in the face of the software process failure. It kills the processes
of OpenStack “nova-api” service on the selected controller node, then checks whether the “nova-api” service is still
available during the failure, by creating a VM then deleting the VM, and checks whether the killed processes are
recovered within a given time interval.

Test preconditions

There is at least one controller node, which is providing the “nova-api” service for API end-point. Denoted as Node1
in the following configuration. There is a glance image “cirros” already uploaded to the SUT. There is a flavor
“m1.nano” for “cirros” already created in the SUT.

Basic test flow execution description and pass/fail criteria

Methodology for verifying service continuity and recovery

The service continuity and process recovery capabilities of “nova-api” service is evaluated by monitoring service
outage time, process outage time, and results of nova operations.

Service outage time is measured by continuously executing “openstack server list” command in loop and checking if
the response of the command request is returned with no failure. When the response fails, the “nova-api” service is
considered in outage. The time between the first response failure and the last response failure is considered as service
outage time.

Process outage time is measured by checking the status of “nova-api” processes on the selected controller node. The
time of “nova-api” processes being killed to the time of the “nova-api” processes being recovered is the process outage
time. Process recovery is verified by checking the existence of “nova-api” processes.

All nova operations are carried out correctly within a given time interval which suggests that the “nova-api” service is
continuously available.

Test execution

Test action 1: Connect to Node1 through SSH, and check that “nova-api” processes are running on Node1

Test action 2: Start two monitors: one for “nova-api” process and the other for “openstack server list” command.
Each monitor will run as an independent process

Test action 3: Connect to Node1 through SSH, and then kill the “nova-api” processes

Test action 4: When “openstack server list” returns with no error, calculate the service outage time, and execute
command “openstack server create

–flavor m1.nano –image cirros test-instance”

Test action 5: Continuously Execute “openstack server show test-instance” to check if the status of VM “test-
instance” is “Active”

Test action 6: If VM “test-instance” is “Active”, execute “openstack server delete test-instance”, then execute
“openstack server list” to check if the VM is not in the list



5/28/2017 dovetail documentation

file:///Users/wenjingchu/freshcvp/dovetail/docs_output/testing_user_testspecification_highavailability/index.html 3/10

Test action 7: Check the status of the “nova-api” process on Node1, and restart the process if it is not running. Get
process outage time from the monitor

Pass / fail criteria

The process outage time is less than 20s.

The service outage time is less than 5s.

The nova operations are carried out in above order and no errors occur.

A negative result will be generated if the above is not met in completion.

Post conditions

No impact on the SUT.

Test Case 2 - Controller node OpenStack service down - neutron-server

Short name

opnfv.ha.tc002.neutron-server_service_down

Use case specification

This test verifies the high availability of the “neutron-server” service provided by OpenStack controller nodes. It kills
the processes of OpenStack “neutron-server” service on the selected controller node, then checks whether the
“neutron-server” service is still available, by creating a network and deleting the network, and checks whether the
killed processes are recovered.

Test preconditions

There is at least one controller node, which is providing the “neutron-server” service for API end-point. Denoted as
Node1 in the following configuration.

Basic test flow execution description and pass/fail criteria

Methodology for monitoring high availability

The high availability of “neutron-server” service is evaluated by monitoring service outage time, process outage time,
and results of neutron operations.

Service outage time is tested by continuously executing “openstack router list” command in loop and checking if the
response of the command request is returned with no failure. When the response fails, the “neutron-server” service is
considered in outage. The time between the first response failure and the last response failure is considered as service
outage time.

Process outage time is tested by checking the status of “neutron-server” processes on the selected controller node.
The time of “neutron-server” processes being killed to the time of the “neutron-server” processes being recovered is
the process outage time. Process recovery is verified by checking the existence of “neutron-server” processes.

Test execution

Test action 1: Connect to Node1 through SSH, and check that “neutron-server” processes are running on Node1



5/28/2017 dovetail documentation

file:///Users/wenjingchu/freshcvp/dovetail/docs_output/testing_user_testspecification_highavailability/index.html 4/10

Test action 2: Start two monitors: one for “neutron-server” process and the other for “openstack router list”
command. Each monitor will run as an independent process.
Test action 3: Connect to Node1 through SSH, and then kill the “neutron-server” processes
Test action 4: When “openstack router list” returns with no error, calculate the service outage time, and execute
“openstack network create test-network”
Test action 5: Continuously executing “openstack network show test-network”, check if the status of “test-
network” is “Active”
Test action 6: If “test-network” is “Active”, execute “openstack network delete test-network”, then execute
“openstack network list” to check if the “test-network” is not in the list
Test action 7: Check the status of the “neutron-server” process on Node1, and restart the process if it is not
running. Get process outage time from the monitor

Pass / fail criteria

The process outage time is less than 20s.

The service outage time is less than 5s.

The neutron operations are carried out in above order and no errors occur.

A negative result will be generated if the above is not met in completion.

Post conditions

No impact on the SUT.

Test Case 3 - Controller node OpenStack service down - keystone

Short name

opnfv.ha.tc003.keystone_service_down

Use case specification

This test verifies the high availability of the “keystone” service provided by OpenStack controller nodes. It kills the
processes of OpenStack “keystone” service on the selected controller node, then checks whether the “keystone”
service is still available by executing command “openstack user list” and whether the killed processes are recovered.

Test preconditions

There is at least one controller node, which is providing the “keystone” service for API end-point. Denoted as Node1
in the following configuration.

Basic test flow execution description and pass/fail criteria

Methodology for monitoring high availability

The high availability of “keystone” service is evaluated by monitoring service outage time and process outage time

Service outage time is tested by continuously executing “openstack user list” command in loop and checking if the
response of the command request is reutrned with no failure. When the response fails, the “keystone” service is
considered in outage. The time between the first response failure and the last response failure is considered as service
outage time.



5/28/2017 dovetail documentation

file:///Users/wenjingchu/freshcvp/dovetail/docs_output/testing_user_testspecification_highavailability/index.html 5/10

Process outage time is tested by checking the status of “keystone” processes on the selected controller node. The time
of “keystone” processes being killed to the time of the “keystone” processes being recovered is the process outage
time. Process recovery is verified by checking the existence of “keystone” processes.

Test execution

Test action 1: Connect to Node1 through SSH, and check that “keystone” processes are running on Node1
Test action 2: Start two monitors: one for “keystone” process and the other for “openstack user list” command.
Each monitor will run as an independent process.
Test action 3: Connect to Node1 through SSH, and then kill the “keystone” processes
Test action 4: Calculate the service outage time and process outage time
Test action 5: The test passes if process outage time is less than 20s and service outage time is less than 5s
Test action 6: Check the status of the “keystone” process on Node1, and restart the process if it is not running for
next test cases

Pass / fail criteria

The killed “keystone” processes are able to recover within 20s and the service outage time is shorter than 5s.

A negative result will be generated if the above is not met in completion.

Post conditions

No impact on the SUT.

Test Case 4 - Controller node OpenStack service down - glance-api

Short name

opnfv.ha.tc004.glance-api_service_down

Use case specification

This test verifies the high availability of the “glance-api” service provided by OpenStack controller nodes. It kills the
processes of OpenStack “glance-api” service on the selected controller node, then checks whether the “glance-api”
service is still available, by creating image and deleting image, and checks whether the killed processes are recovered.

Test preconditions

There is at least one controller node, which is providing the “glance-api” service for API end-point. Denoted as Node1
in the following configuration. There is a cirros.iso at the working directory.

Basic test flow execution description and pass/fail criteria

Methodology for monitoring high availability

The high availability of “glance-api” service is evaluated by monitoring service outage time, process outage time, and
results of glance operations.

Service outage time is tested by continuously executing “openstack image list” command in loop and checking if the
response of the command request is returned with no failure. When the response fails, the “glance-api” service is
considered in outage. The time between the first response failure and the last response failure is considered as service
outage time.



5/28/2017 dovetail documentation

file:///Users/wenjingchu/freshcvp/dovetail/docs_output/testing_user_testspecification_highavailability/index.html 6/10

Process outage time is tested by checking the status of “glance-api” processes on the selected controller node. The
time of “glance-api” processes being killed to the time of the “glance-api” processes being recovered is the process
outage time. Process recovery is verified by checking the existence of “glance-api” processes.

Test execution

Test action 1: Connect to Node1 through SSH, and check that “glance-api” processes are running on Node1
Test action 2: Start two monitors: one for “glance-api” process and the other for “openstack image list”
command. Each monitor will run as an independent process.
Test action 3: Connect to Node1 through SSH, and then kill the “glance-api” processes
Test action 4: When “openstack image list” returns with no error, calculate the service outage time, and execute
“openstack image create test-cirros –file cirros.iso –disk-format iso –container-format bare”
Test action 5: Continuously execute “openstack image show test-image”, check if status of “test-image” is “active”
Test action 6: If “test-image” is “active”, execute “openstack image delete test-image”. Then execute “openstack
image list” to check if “test-image” is not in the list
Test action 7: Check the status of the “glance-api” process on Node1, and restart the process if it is not running.
Get process outage time from monitor

Pass / fail criteria

The process outage time is less than 20s.

The service outage time is less than 5s.

The glance operations are carried out in above order and no errors occur.

A negative result will be generated if the above is not met in completion.

Post conditions

No impact on the SUT.

Test Case 5 - Controller node OpenStack service down - cinder-api

Short name

opnfv.ha.tc005.cinder-api_service_down

Use case specification

This test verifies the high availability of the “cinder-api” service provided by OpenStack controller nodes. It kills the
processes of OpenStack “cinder-api” service on the selected controller node, then checks whether the “cinder-api”
service is still available by executing command “openstack volume list” and whether the killed processes are
recovered.

Test preconditions

There is at least one controller node, which is providing the “cinder-api” service for API end-point. Denoted as Node1
in the following configuration.

Basic test flow execution description and pass/fail criteria

Methodology for monitoring high availability



5/28/2017 dovetail documentation

file:///Users/wenjingchu/freshcvp/dovetail/docs_output/testing_user_testspecification_highavailability/index.html 7/10

The high availability of “cinder-api” service is evaluated by monitoring service outage time and process outage time

Service outage time is tested by continuously executing “openstack volume list” command in loop and checking if the
response of the command request is returned with no failure. When the response fails, the “cinder-api” service is
considered in outage. The time between the first response failure and the last response failure is considered as service
outage time.

Process outage time is tested by checking the status of “cinder-api” processes on the selected controller node. The
time of “cinder-api” processes being killed to the time of the “cinder-api” processes being recovered is the process
outage time. Process recovery is verified by checking the existence of “cinder-api” processes.

Test execution

Test action 1: Connect to Node1 through SSH, and check that “cinder-api” processes are running on Node1
Test action 2: Start two monitors: one for “cinder-api” process and the other for “openstack volume list”
command. Each monitor will run as an independent process.
Test action 3: Connect to Node1 through SSH, and then execute kill the “cinder-api” processes
Test action 4: Calculate the service outage time and process outage time
Test action 5: The test passes if process outage time is less than 20s and service outage time is less than 5s
Test action 6: Check the status of the “cinder-api” process on Node1, and restart the process if it is not running
for next test cases

Pass / fail criteria

The killed “cinder-api” processes are able to recover within 20s and the service outage time is shorter than 5s.

A negative result will be generated if the above is not met in completion.

Post conditions

No impact on the SUT.

Test Case 6 - Controller Node CPU Overload High Availability

Short name

opnfv.ha.tc006.cpu_overload

Use case specification

This test verifies the availability of services when one of the controller node suffers from heavy CPU overload. When
the CPU usage of the specified controller node is up to 100%, which breaks down the OpenStack services on this
node, the Openstack services should continue to be available. This test case stresses the CPU usage of a specific
controller node to 100%, then checks whether all services provided by the SUT are still available with the monitor
tools.

Test preconditions

There is at least one controller node, which is providing the “cinder-api”, “neutron-server”, “glance-api” and
“keystone” services for API end-point. Denoted as Node1 in the following configuration.

Basic test flow execution description and pass/fail criteria



5/28/2017 dovetail documentation

file:///Users/wenjingchu/freshcvp/dovetail/docs_output/testing_user_testspecification_highavailability/index.html 8/10

Methodology for monitoring high availability

The high availability of related OpenStack service is evaluated by monitoring service outage time

Service outage time is tested by continuously executing “openstack router list”, “openstack stack list”, “openstack
volume list”, “openstack image list” commands in loop and checking if the response of the command request is
returned with no failure. When the response fails, the related service is considered in outage. The time between the
first response failure and the last response failure is considered as service outage time.

Methodology for stressing CPU usage

To evaluate the high availability of target OpenStack service under heavy CPU load, the test case will first get the
number of logical CPU cores on the target controller node by shell command, then use the number to execute ‘dd’
command to continuously copy from /dev/zero and output to /dev/null in loop. The ‘dd’ operation only uses CPU, no
I/O operation, which is ideal for stressing the CPU usage.

Since the ‘dd’ command is continuously executed and the CPU usage rate is stressed to 100%, the scheduler will
schedule each ‘dd’ command to be processed on a different logical CPU core. Eventually to achieve all logical CPU
cores usage rate to 100%.

Test execution

Test action 1: Start four monitors: one for “openstack image list” command, one for “openstack router list”
command, one for “openstack stack list” command and the last one for “openstack volume list” command. Each
monitor will run as an independent process.
Test action 2: Connect to Node1 through SSH, and then stress all logical CPU cores usage rate to 100%
Test action 3: Calculate the service outage time
Test action 4: The test passes if service outage time is less than 5s
Test action 5: Kill the process that stresses the CPU usage

Pass / fail criteria

The service outage time is shorter than 5s.

A negative result will be generated if the above is not met in completion.

Post conditions

No impact on the SUT.

Test Case 7 - Controller Node Disk I/O Block High Availability

Short name

opnfv.ha.tc007.disk_I/O_block

Use case specification

This test verifies the high availability of control node. When the disk I/O of the specific disk is blocked, which breaks
down the OpenStack services on this node, the read and write services should continue to be available. This test case
blocks the disk I/O of the specific controller node, then checks whether the services that need to read or write the
disk of the controller node are available with some monitor tools.

Test preconditions



5/28/2017 dovetail documentation

file:///Users/wenjingchu/freshcvp/dovetail/docs_output/testing_user_testspecification_highavailability/index.html 9/10

Controller nodes high availability is working.

Basic test flow execution description and pass/fail criteria

Methodology for monitoring high availability

The high availability of target OpenStack service is evaluated by monitoring service outage time

Service availability is tested by continuously executing “openstack flavor list” command in loop and checking if the
response of the command request is returned with no failure. When the response fails, the related service is
considered in outage.

Methodology for blocking disk I/O

To evaluate the high availability of target OpenStack service under heavy I/O load, the test case will execute shell
command on the selected controller node to continuously writing 8kb blocks to /test.dbf

Test execution

Test action 1: Connect to Node1 through SSH, and then block disk I/O by continuously writing 8kb blocks to
/test.dbf
Test action 2: Start a monitor: for “openstack flavor list” command
Test action 3: Create a flavor called “test-001”
Test action 4: Check whether the flavor “test-001” is created
Test action 5: Calculate the service outage time
Test action 6: The test passes if service outage time is less than 5s
Test action 7: Release the blocked disk I/O and delete the created “test-001” flavor

Pass / fail criteria

The flavor “test-001” is created successfully and the service outage time is shorter than 5s.

A negative result will be generated if the above is not met in completion.

Post conditions

No impact on the SUT.

Test Case 8 - Controller Load Balance as a Service High Availability

Short name

opnfv.ha.tc008.load_balance_service_down

Use case specification

This test verifies the high availability of “load balancer” service. When the “load balancer” service of a specified
controller node is killed, whether “load balancer” service on other controller nodes will work, and whether the
controller node will restart the “load balancer” service are checked. This test case kills the processes of “load
balancer” service on the selected controller node, then checks whether the request of the related OpenStack
command is processed with no failure and whether the killed processes are recovered.

Test preconditions



5/28/2017 dovetail documentation

file:///Users/wenjingchu/freshcvp/dovetail/docs_output/testing_user_testspecification_highavailability/index.html 10/10

There is at least one controller node, which is providing the “load balancer” service for rest-api. Denoted as Node1 in
the following configuration.

Basic test flow execution description and pass/fail criteria

Methodology for monitoring high availability

The high availability of “load balancer” service is evaluated by monitoring service outage time and process outage
time

Service outage time is tested by continuously executing “openstack image list” command in loop and checking if the
response of the command request is returned with no failure. When the response fails, the “load balancer” service is
considered in outage. The time between the first response failure and the last response failure is considered as service
outage time.

Process outage time is tested by checking the status of processes of “load balancer” service on the selected controller
node. The time of those processes being killed to the time of those processes being recovered is the process outage
time. Process recovery is verified by checking the existence of processes of “load balancer” service.

Test execution

Test action 1: Connect to Node1 through SSH, and check that processes of “load balancer” service are running on
Node1
Test action 2: Start two monitors: one for processes of “load balancer” service and the other for “openstack image
list” command. Each monitor will run as an independent process
Test action 3: Connect to Node1 through SSH, and then kill the processes of “load balancer” service
Test action 4: Calculate the service outage time and process outage time
Test action 5: The test passes if process outage time is less than 20s and service outage time is less than 5s
Test action 6: Check the status of processes of “load balancer” service on Node1, and restart those processes if
they are not running for next test cases.

Pass / fail criteria

The killed processes of “load balancer” service are able to recover within 20s and the service outage time is shorter
than 5s.

A negative result will be generated if the above is not met in completion.

Post conditions

No impact on the SUT.


