

Dataplane Performance, Capacity, and Benchmarking in OPNFV

Trevor Cooper, Intel Corp.

Sridhar Rao, Spirent Communications

Al Morton, AT&T Labs

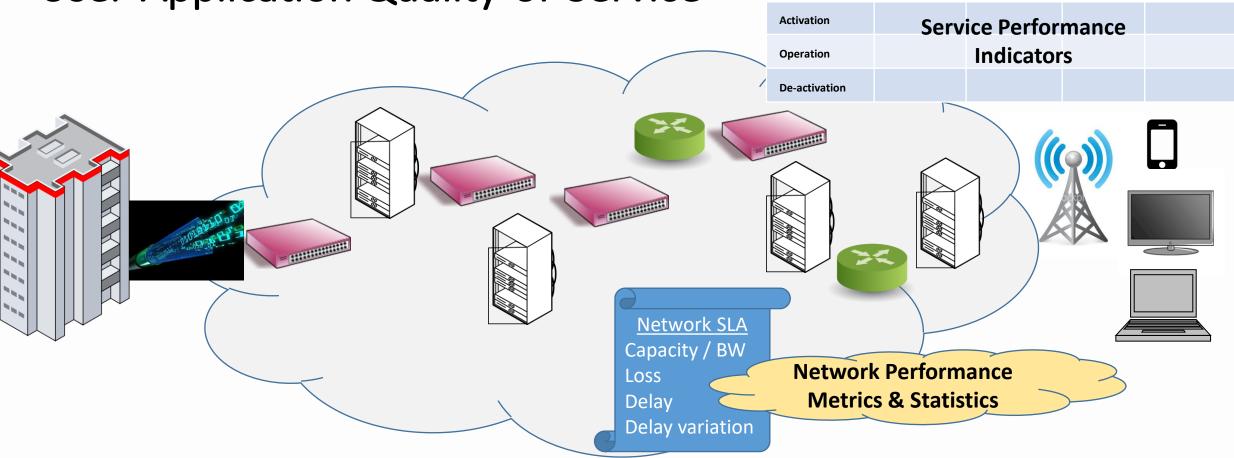
... with acknowledgement to VSPERF committers

Danube reporting

Agenda

- 1. Dataplane Performance Measurement with VSPERF
- 2. VSPERF Example Results and Analysis
- 3. Moving Ahead with VSPERF

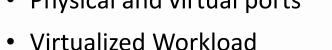
RELIABILITY


SCALABILITY

ACCURACY

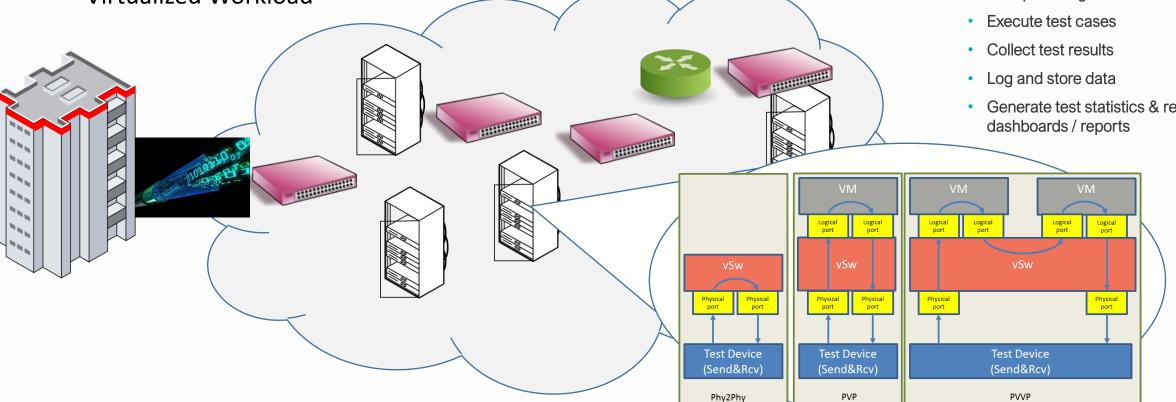
E2E Dataplane Performance Measurement & Analysis ...

User-Application Quality-of-Service

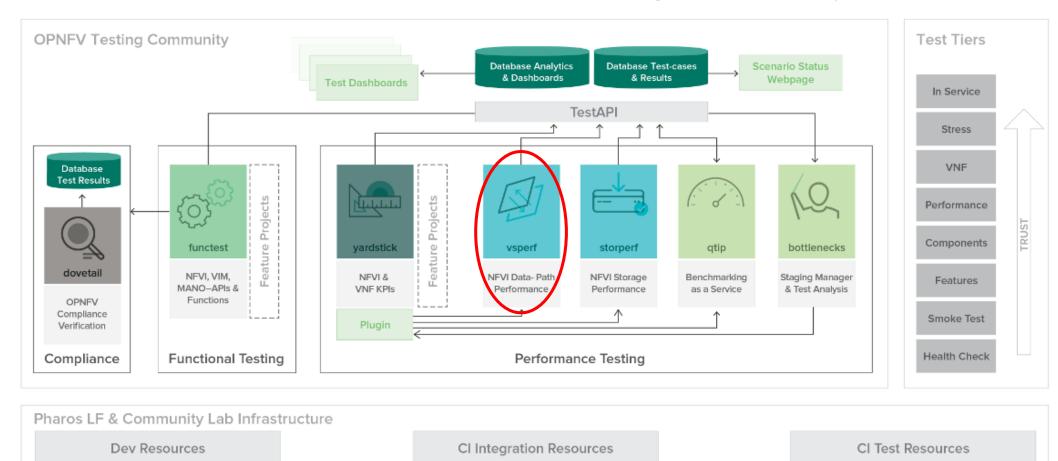

COVERAGE

SPEED

VSPERF DUT is an important part of the E2E Data Path


- Virtual Switching technology and NIC offloads
- Physical and virtual ports

VSPERF Test Automation


- Source/build SW components
- Set up vSwitch
- Set up workload
- Set up traffic generator

Generate test statistics & result

VSPERF and the OPNFV Testing Community

Dataplane Performance Testing Options

Workload (DUT)	Traffic Generator (HW or SW)	Automation code (Test framework)
Sample VNFs SampleVNF (vACL, vFW, vCGNAT,) Open source VNF catalogue	Hardware - commercial Ixia Spirent Xena	Compliance • Dovetail
Test VMs • vloop-vnf (dpdk-testpmd, Linux bridge, L2fwd module) • Spirent stress-VM • Virtual Traffic classifier	Virtual - commercial Ixia Spirent	VIM and MANO • NFVbench
Virtual switching OVS OVS-dpdk VPP	Software - Open Source Pktgen Moongen TREX PROX	VIM, no MANO • Yardstick • Qtip • Bottleneck
Physical / virtual interfaces NIC (10GE, 40GE,) Vhost-user Pass-through, SR-IOV		No VIM or MANO • VSPERF • Storperf
HW offload TSO encrypt/decrypt SmartNIC		*Used in test examples presented

Daily tests on master and stable branch in OPNFV Lab https://build.opnfv.org/ci/view/vswitchperf/

*	vswitchperf-daily-danube
*	vswitchperf-daily-master
*	vswitchperf-merge-danube
*	vswitchperf-merge-master
*	vswitchperf-verify-danube
**	vswitchperf-verify-master

Specifications

- IETF BMWG RFCs for Dataplane Performance
- **ETSI NFV Test Specifications**

Topologies

- vSwitch
- SR-IOV etc.
- Phy2Phy
- **PVP**
- PVVP (multi-VM)

/tmp/results_	2016-01-19_17-04-	26/result_phy2phy_tput_p2p.md

- Test ID: phy2phy_tput Description: LTD.Throughput.RFC2544.PacketLossRatio
- Deployment: p2p Traffic type: rfc2544
- Bidirectional : True

Metric	Res		
roughput rx fps			
oughput_rx_mbps			

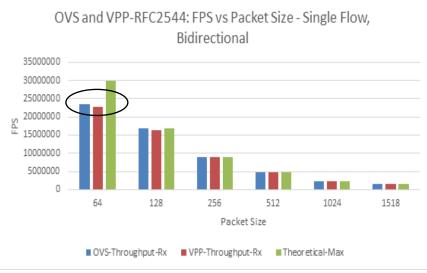
22626032.812 throughput_rx_percent max_latency_ns avg_latency_ns rfc2544 packet_size traffic_type

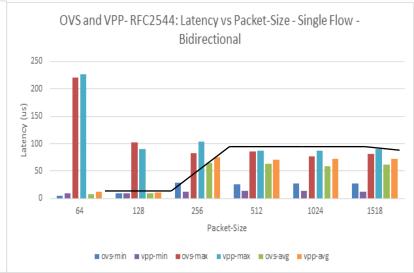
VSPERF Example Results and Analysis

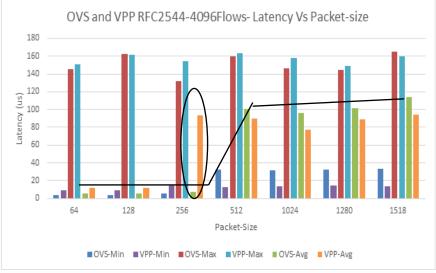
Results and Analysis from Recent Tests

Using VSPERF to Analyse:

- OVS and VPP
- 2. Traffic Generators
- 3. Impact of noisy neighbor
- 4. Back2Back frame testing with CI




JUNE 2017 BEIJING, CHINA


Virtual Switches in VSPERF: OVS and VPP

RFC2544, Phy2Phy OVS2.6.90, VPP 17.01DPDK: 16.07.0

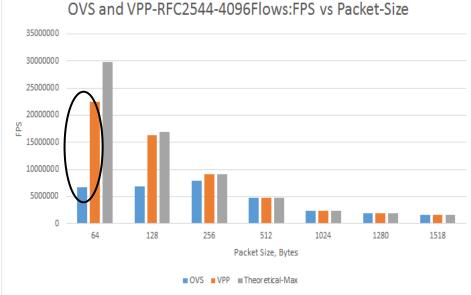
Both OVS and VPP (64 B, 1-Flow, bidir), the throughput is ~80% of linerate

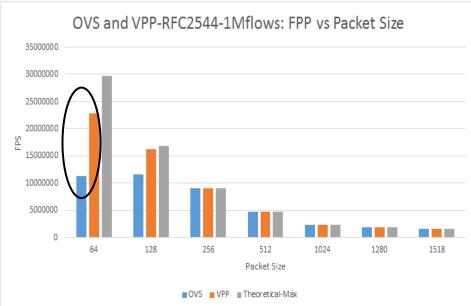
NIC has known processing limits that could be the bottleneck For uni-directional traffic line-rate is achieved for 64B

Avg. latency for OVS and VPP varies from 10-90us with minimal (1-9%) difference between them

Average latency jumps significantly after 128 B

For multi-stream, latency variation are:


Min: 2-30us


Avg: 5-110us

Inconsistency for 256B with OVS vs VPP

A jump in latency for higher packet-sizes, is seen in almost all cases

A

ERF: OVS and VPP

For multi-stream, 64 and 128B – VPP throughput can go up to 70% higher than OVS. But ...

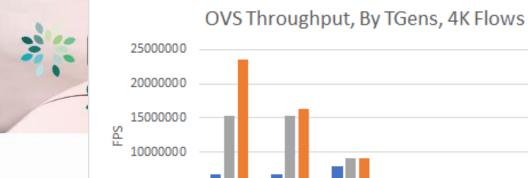
Inconsistencies

- OVS: 4K flows lower TPUT vs 1M
- Traffic generator results differ
- *Possible Reasons*
- Packet-handling architectures
- Packet construction variation
- Test traffic is fixed size

JUNE 2017 BEIJING, CHINA

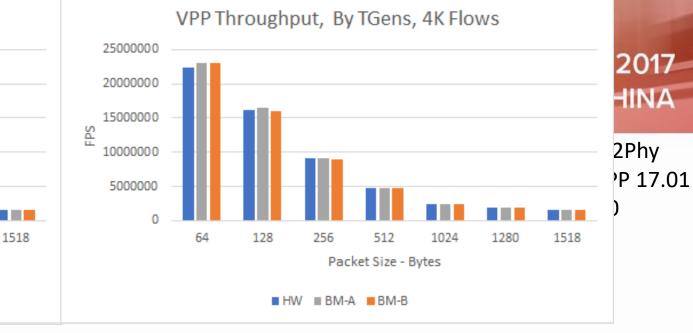
RFC2544, Phy2Phy OVS2.6.90, VPP 17.01 DPDK: 16.07.0

Analysis of Cache Miss: [SNAP monitoring tool]


The cache miss of VPP is 6% lower compared to the cachemisses for OVS.

Requires further analysis!

Lessons Learned – OVS and VPP


- Simple performance test-cases (#flows + pps) may not provide meaningful comparisons
 - EANTC Validates Cisco's Network Functions Virtualization (NFV) Infrastructure (Oct 2015)
 - Test case topology is VM to VM ... 0.001% packet loss accepted ... Pass-through connects physical interfaces to VNF ... VPP and OVS use a "single core" ... Software versions OVS-dpdk 2.4.0, DPDK 2.0, QEMU 2.2.1 ... Processor E5-2698 v3 (Haswell 16 physical cores), NW adaptor X520-DA2
- Results are use-case dependent
 - Topology and encapsulation impact workloads under-the-hood
 - Realistic and more complex tests (beyond L2) may impact results significantly
 - Measurement methods (searching for max) may impact results
 - DUT always has multiple configuration dimensions
 - Hardware and/or software components can limit performance (but this may not be obvious)
 - Metrics / statistics can be deceiving without proper considerations to above points!

64

128

5000000

- Software Traffic Generators on bare-metal are comparable to HW reference for larger pkt sizes
- Small pkt sizes show inconsistent results

256

■ HW ■ BM-A ■ BM-B

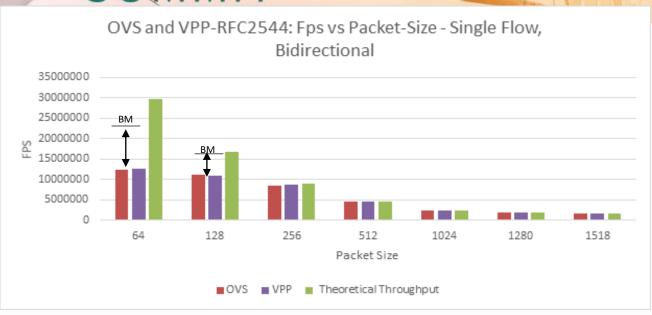
- Across different generators
- Between VPP and OVS
- For both single and multi-stream scenarios

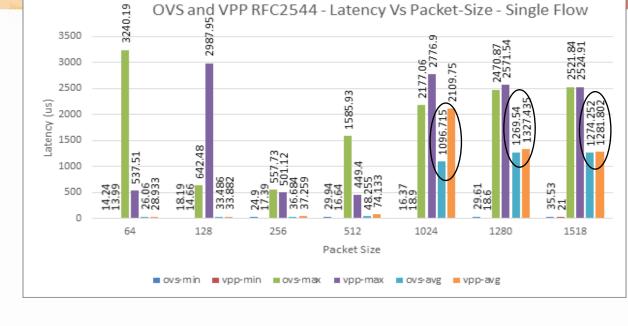
512

Packet Size - Bytes

1024

1280


 For now, in VSPERF, existing baremetal software trafficgens, are unable to provide latency values*


^{*}Running vsperf in "trafficgen-off" mode, it is possible to obtain latency values for some SW TGens.

Traffic Generator as a VM

JUNE 2017 BEIJING, CHINA

With TGen-as-a-VM, the throughput is lower (upto 40%) in comparison with baremetal traffic generator.

Mostly restricted to lower packet size.

Reasons

Inherent baremetal vs VM differences.

Resource allocations.

Processes per packet.

In VSPERF, TGen-a-VM, can provide latency values.

* The latency values (min and avg) can be 10x times the values provided by the hardware traffic-generator *

[Configuration of NTP servers]

Software Traffic Generators – Lessons Learned

TG characteristics can impact measurements

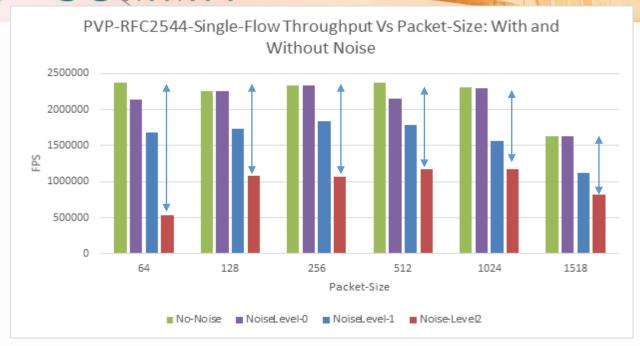
- Inconsistent results seen for small packet sizes across TGs
- Packet stream characteristics may impact results ... bursty traffic is more realistic!
- Back2Back tests confirm sensitivity of DUT at small frame sizes
- Switching technology (DUT) are not equally sensitive to packet stream characteristics

Configuration of 'environment' for Software traffic-generators is critical

CPUs: Count and affinity definition

Memory: RAM, Hugepages and NUMA Configuration

DPDK Interfaces: Tx/Rx Queues


PCI Passthrough or SRIOV configurations

Software version

Noisy Neighbor Test

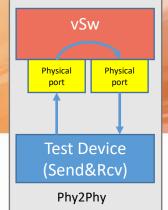
JUNE 2017 BEIJING, CHINA

DUT: VSPERF with OVS and L2FWD VNF.

Traffic Generator: Hardware. **Noisy Neighbor**: Stressor VM

Test: RFC2544 Throughput

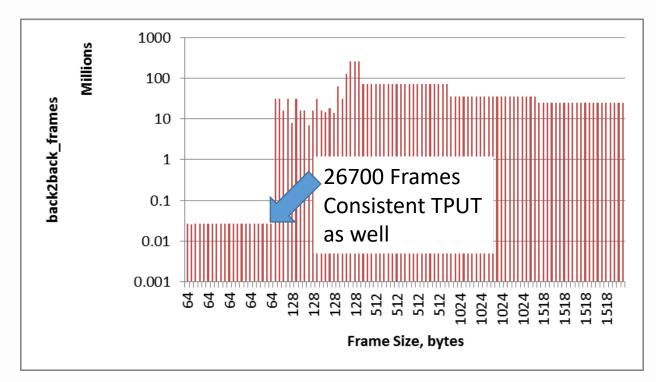
Level	Last level cache consumption by the noisy neighbor VM
0	Minimal I3 cache consumption (<10%)
1	Average L3 cache consumption (50%)
2	High L3 cache consumption (100%)


CPU affinity configuration and NUMA configuration can protect from majority of Noise.

Consumption of Last-level cache (L3) is key to creating noise*

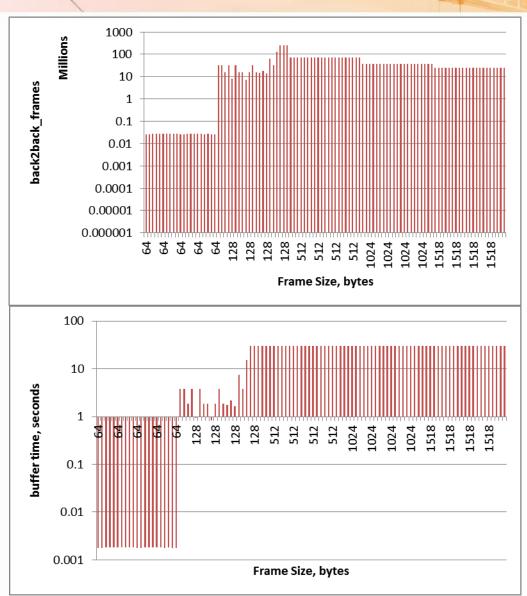
If the noisy neighbor can thrash the L3-Cache, it can lower the forwarding performance – throughput – upto 80%

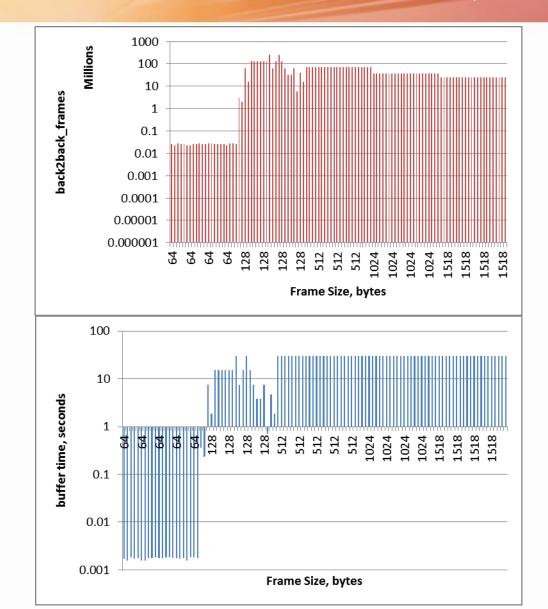
^{*}It maybe be worth studying the use of tools such as cache-allocation-technology (Libpqos) to manage noisy-neighbors as shown here:



JUNE 2017 BEIJING, CHINA

Back2Back Frame Testing Analysis


- Seek Maximum burst length (sent with min. spacing, or back-to-back) that can be transmitted through the DUT without loss (est.Buffer size)
- HW Tgen, Phy2Phy, OVS, CI tests on Intel Pod 12, Feb-May 2017



- Model: Tgen->Buff->HeaderProc->Rcv
- Only 64byte Frames are buffered!
- Ave Burst length = 26,700 Frames
- Source of Error: many Frames are processed before buffer overflow
- Corr_Buff=5713 frames, or 0.384ms
- Similar results for Intel Pod 3

Backup: Back2Back Frame Test June 2017 BEIJING, CHINA

Pod

S

Moving Ahead with VSPERF

STUDIES

Comparing virtual switching technologies and NFVI setups

More realistic traffic profiles

More complex topologies (e.g. full mesh)

Additional real-world use-cases (e.g. overlays)

Custom VNFs (dpdk workloads) Stress tests (e.g. noisy neighbor) Additional test cases (e.g. TCP)

FEATURES

Visualization and Interpretation of test results

New NFVI test specs & metrics (IETF, ETSI NFV)
Display of latency measurements
Test environment and DUT configurations
Traffic generator capabilities

Dashboards and analytics Correlation of statistics Simplification of results

INTEGRATION

Tool support and integration with other OPNFV frameworks

Metrics agents & monitoring systems Additional traffic generators (e.g. 40GE) Cl unit tests for developers OPNFV scenario support Installer integration Yardstick integration