Kaloom™ Copyright 2021

Kubernetes Networking

N .
(kaloom) semantics

Data Center Networking

Per Andersson

Abstraction of K8s networking

> The manifest used to define Kubernetes entities are typically free of any
sort of IP address information.

e Service

 Network Policy
* Pod

* Workload Resources
* Deployment
* ReplicaSet
» StatefulSet

* DaemonSet
* Job

> The basic semantics of Kubernetes and the information found in the
manifest defines the connectivity rules and behavior

Kaloom™ Copyright 2021

<kaloom>

https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/job/

Namespace, Name and Identity

> All entities belong to a namespace
> All entities have a name that is unique in that namespace
> All entities have a unique identifier (UID)

> The identity can be simplified to type<namespace, name>
* namespace<name>
* service<namespace, name>

networkPolicy<namespace, name>

pod<namespace, name>

deployment<namespace, name>

replicaSet<namespace, name>

* daemonSet<namespace, name>

* job<namespace, name>

Ay .
Kaloom™ Copyright 2021 (kaloom)

Pod lifecycle and Pod Communication

> The “Workload Resources” are there to manage and control Pods and are not
basic entities from a communication standpoint, we only need to consider

* Pod
* Network Policy
* Service

> The Pod life cycle can be abstracted to
* addPod(pod<namespace, name>)
* removePod(pod<namespace, name>)

> Kubernetes assumes that every pod can communicate with all other pod as long
as there is no network policy that forbids it.

> The Pod communication can be abstracted to two connection primitives

* openPodConnection(sourcePod, destinationPod, protocol, port) =>
<true, connectionld> or <false, 0>

* closePodConnection(connectionld)

Ay .
Kaloom™ Copyright 2021 (kaloom)

Network Policy

> The NetworkPolicy spec has all the information needed to define a particular network policy in the given namespace.
* podSelector: Each NetworkPolicy includes a podSelector which selects the grouping of pods to which the policy applies. An

empty podSelector , “podSelector: {} selects all pods in the namespace.

TpolicyTypes: Each NetworkPolicy includes a policyTypes list which may include either Ingress, Egress, or both. The poIichypes
ield Indicates whether or not the given policy applies to ingress traffic to selected I:)od, egress traffic from selected pods, or
both. If no policyTypes are specified on a NetworkPolicy then by default Ingress will always be set and Egress will be set if the

NetworkPolicy has any egress rules.

ingress: Each NetworkPolicy may include a list of whitelist ingress rules. Each rule allows traffic which matches both the from and
ports sections.

egress: Each NetworkPolicy may include a list of whitelist egress rules. Each rule allows traffic which matches both the to and
ports sections.

> to and from selectors, there are four kinds of selectors that can be specified in an ingress from section or egress to
section:

podSelector: This selects particular Pods in the same namespace as the NetworkPolicy which should be allowed as ingress
sources or egress destinations.

QamespaceSelector: This selects particular namespaces for which all Pods should be allowed as ingress sources or egress
estinations.

namespaceSelector and podSelector: A single to/from entry that specifies both namespaceSelector and podSelector selects
particular Pods within particular namespaces.

ipBlock: This selects particular IP CIDR ranges to allow as ingress sources or egress destinations. These should be cluster-external
IPs, since Pod IPs are ephemeral and unpredictable.

~N .
Kaloom™ Copyright 2021 5 (kqloom)

https://kubernetes.io/docs/concepts/services-networking/network-policies/

Simple Network Policy reference model

Ingress ﬁ
From:
From: l Selector 011
Selector 001

Pods selected by either the
podSelector, nameSpaceSelector or both

To: I
Selector 011 ll Permitted Sessions >

N
Kaloom™ Copyright 2021 6 (kaloom)

Ingress Sessions

“podSelector”

=)]

POD: zz01
Pods selected by the podSelector

Egress

To: ll
Selector 001

Abstract Network Policy Filter System

v

> addNetworkPolicy(The ipBlock part of to and from selectors is ignored for

networkPolicy<namespace, name) now
i This policy filter system is not dependent on
> updateNetworkPolicy(policy y p

. * The number of pod replicas
networkPollcy<namespace, name)

v

* The number of pod interfaces

> removeNetworkPolicy(. Which mtertace o i atirese s confgured t0o

networkPolicy<namespace, name) g e

i > The policy filter system is dependent on

> allowNewConnectionFromPod(- Pod manifests

destinationPod, * Pod labels

source P|0d, Label selectors in the Network Policies

protocol, > Itisonl

o y updated when

deStmatlonport) * policy filters are added, updated or removed
> allowNewConnectionTo POd(¢ Labels used in policy filters are changed

sou r_ceP(_)d, > Itis easy to extend with functionality

destinationPod, show how policies are related

protocol, * which policies that applies towards a

destinationPort) * namespace

Service
Workload entities
individual pods

Ay .
Kaloom™ Copyright 2021 (kaloom)

Pod Communication with Network Policies

> openPodConnection must be updated to > Theda‘ilowhNe\IivCo?neptionToPod is
: usea to C .ec outgoling egress
support the NW policy check connectivity from the gsourcePod”
openPodConnection(sourcePod, destinationPod, protocol, port) * This is done by matching the
{ “sourcePod” towards the
if NetworkPolicy PodSelector and the
allowNewConnectionToPod|(“destinationPod”, “protocol” and “port”
sourcePod, towards the NetworkPolicy egress to
destinationPod, rules
protocol, . .
destinationPort) > The allowNewConnectionToPod is
&& used to check incomming ingress
allowNewConnectionFromPod|(connectivity towards the
destinationPod, “destinationPod”
‘;?gtrgigfd’ * This is done by matching the
destinationPort) “destinationPod” towards the
then NetworkPolicy PodSelector and the

|II

“sourcePod”, “protocol” and “port”
towards the NetworkPolicy ingress

else from rules
return <false, 0>

return <true, “NewConnectionID”>

Ay .
Kaloom™ Copyright 2021 (kaloom)

Service lifecycle and Service to Pod mapping

> Service is the basic construct used to load balance Kubernetes applications.

* Itis built in and works in corg’unction with conjunction with workload resources like _
Deployment, StatefulSet and DaemonSet to provide application scalability and load balancing.

* A Service is mapﬁed to a set of Pods by using label and label selectors, the mapping can be
simplified though by defining a Service <-> Pod mapping service
> The Service life cycle can be abstracted to
e addService(service<namespace, name>)
* removeService(servcice<namespace, name>)

> The mapping service can be abstracted to six primitives
* addPod2ServiceMapping(pod<namespace, name>, service<namespace, name>)
* removePod2ServiceMapping(pod<namespace, name>, service<namespace, name>)
* removePod2ServiceMappings(pod<namespace, name>)
* removeService2PodMappings(service<namespace, name>)
* |lookupPod2ServiceMappings(pod<namespace, name>) => {service<namespace, name>*}
* |lookupService2PodMappings(Service<namespace, name>) => {pod<namespace, name>*}

Ay .
Kaloom™ Copyright 2021 (kaloom)

Pod and Service lifecycle updates and service to pod

communication

> Pod lifecycle: removePod must clean up the
Service mappings

removePod(pod<namespace, name>)

removePod2ServiceMappings(pod<namespace, name>)

}

> Service lifecycle: removeService must clean
up the Pod mappings

removeService(service<namespace, name>)

removeService2PodMappings(service<namespace, name>)

}

> Service to pod communication can be
abstracted to one primitive

* openServiceConnection(
sourcePod,
destinationService,
protocol,
port)
=> <true, connectionld> or <false, 0>

Kaloom™ Copyright 2021

OpenServiceConnection can then

specified as

openServiceConnection(sourcePod,

destinationService,
protocol,
port)

podSet pods =
lookupService2PodMappings(destinationService)

if isEmptySet(pods) then
return <false, 0>
else
return openPodConnection(sourcePod,
pods.SelectOnePod(),
protocol,
port)

<kaloom>

Basic Kubernetes Network Semantics

> The basic Network semantics can be summarized in

* All Pods can communicate with each other, unless there is a network policy rule that
forbids it

* A Service can load balance connectivity towards a set of Pods
* The Network Policy regulate connectivity between Pods

Ay .
Kaloom™ Copyright 2021 (kaloom)

What is missing

> Pod with single network attachment towards one network with single IP
address assignment

> Pod with multi network attachment towards one or several networks with
single IP Addresses assignment for each network attachment

> Pod with multi network attachment towards one or several networks with
multiple IP Addresses assignment for each network attachment

> Overlapping address spaces

> Dynamic networking
* Add/remove network
* Pod with support for dynamic network attachment and detachment
* Pod with support for dynamic interface address assignment and removal

Ay .
Kaloom™ Copyright 2021 (kaloom)

Step 1:Extend model with support for single network and
pods with single Network Attachment with single IP address

> Every Pod should have one IP address added to one interface that is
attached to a common network

> Every Service can be assigned one Virtual IP address

> A Network Policy must support the IpBlock in egress and ingress rules
> Add support for connectivity to and from cluster external entities

Ay .
Kaloom™ Copyright 2021 (kaloom)

Map ip addresses to Pod And Services

> Add a mapping service from Pod to ip addresses

* addAddress2PodMapping(ipAddress, pod<namespace, name>)

* removeAddress2PodMapping(ipAddress, pod<namespace, name>)

* removePod2AddressMappings(pod<namespace, name>)
lookupPod2AddressMappings(pod<namespace, name>) => {ipAddress*}
lookupAddress2PodMapping(ipAddress) => {pod<namespace, name>"?}

> Add a mapping service from Service to ip addresses

* addAddress2ServiceMapping(ipaddress, service<namespace, name>)

* removeAddress2ServiceMapping(ipaddress, service<namespace, name>)

* removeService2AddressMappings(service<namespace, name>)

* lookupService2AddressMappings(service<namespace, name>) => {ipAddress*}
lookupAddress2ServiceMapping(ipAddress=> {service<namespace, name>?}

Ay .
Kaloom™ Copyright 2021 (kaloom)

New primitives and lifecycle updates

> Communication must be extended with > Pod lifecycle: removePod must clean up the

two new primitives Address mappings
* openConnectionWithipAddresses(sourcelpAddress, removePod(pod<namespace, hame>)
destinationlpAddress, {
protocol,

removePod2ServiceMappings(pod<namespace, name>)

t) => <t tionld> or <false, 0>
port) rue, connectionid>or <false, removePod2AddressMappings(pod<namespace, name>)

> Network Policy system must be extended }

with two more primitives > Service lifecycle: removeService must clean up
* allowNewConnectionFromIpAddress(

courcelphddress the Address mappings

destinationPod, removeService(service<namespace, name>)
protocol, {

destinationPort) removeService2PodMappings(service<namespace, name>)
« allowNewConnectionTolpAddress(removeService2AddressMappings(service<namespace, name>)
sourcePod, }
destinationlpAddress,
protocol,
destinationPort)

Ay .
Kaloom™ Copyright 2021 (kaloom)

Definition of openConnectionFromlpAddresses

openConnectionFromlpAddresses(

i > Important to understand that everything
{ port) " / is based on that
// find out if addresses maps to pod or services

podSet sourcePod = lookupAddress2PodMapping(sourcelpAddress) b Ad d resses are un Iq ue
serviceSet destService = lookupAddress2ServiceMapping(destinationlpAddress)
podSet destPod . A d d I b d . .
n address can only be used in one mapping
if destService.isEmpty() then {// find out if destination address maps to a pod
destPod = lookupAddress2PodMapping(destinationlpAddress)

}else { _ _ _ > From that it is possible to conclude several interesting things
destPod = lookupService2PodMappings(destService.selectOnePod())

!
if destPod.isEmpty() then {

if sourcePod.isNotEmpty() &&) * The only thing that matters is that lookupAddress2PodMapping only can return
allowNewConnectionTolpAddress(sourcePod[0], sero or one Pod
destinationlpAddress,

protocol, * The number of addresses returned by lookupPod2AddressMapping is irrelevant for the

destinationPort) then { ;
return <true, “New ConnectionD”> Kubernetes Network Semantic

* |t does not matter how many addresses that are mapped to a Pod!!!

;eturn <false, 0> > The Kubernetes Network semantics is not changed by
i}f sourcePod.isEmpty() then { * The number networks used in the system
if allowNewConnectionFromlpAddress(sourcelpAddress,
S(racs)g)nca(;cli'onPod[O], * The number of network attachments in a pod
eturn <true ”Nga’s'ccigaﬂggtlii’grrl'clgc,h>en { * The number of networks attached to a pod
Jelse | } ' * The number of IP addresses assigned to an interface/network attachment
ifa"°WNeWC°””e°ti°”Fr°mp°d§§f£§c§c§8ﬂ,¥§a[0}, > That said, the network gnvironment in any multi homed Pod
return <true ”Ng\?vsggﬂtni'g(r:ltﬁgrq’(l%t’len{ becomes more Cha”engmg
} ’ * How to handle routes, VRFs....

return <false, 0>

}
Ay .
Kaloom™ Copyright 2021 (kaloom)

Step 2:Extend model with support for multi network and pods with
multi—-Network Attachments with multiple IP addresses

> Every Pod must have at least IP addresses added to an interface that is
attached to a common “cluster” network

> Every Service can be assigned one Virtual IP address
> A Network Policy must support the IpBlock in egress and ingress rules
> Add support for connectivity to and from cluster external entities

> A Pod can have multiple network attachments towards one or more
networks

> A Pod can have one or more ip addresses assigned to each Network
attachment

> This is already supported by the model

Ay .
Kaloom™ Copyright 2021 (kaloom)

Pod and Service Abstractions

> Pod lifecycle
* addPod(pod<namespace, name>)
* removePod(pod<namespace, name>)

> Service lifecycle
* addService(service<namespace, name>)
* removeService(servcice<namespace, name>)

> Pod and Service Communication

* openPodConnection(sourcePod,
destinationPod,
protocol,
port) =>

<true, connectionld> or <false, 0>

* openServiceConnection(sourcePod,
destinationService,
protocol,
port) =>

<true, connectionld> or <false, 0>

* openConnectionWithlpAddresses(
sourcelpAddress,
destinationlpAddress,
protocol,
port) =>

<true, connectionld> or <false, 0>

* closePodConnection(connectionld)

Kaloom™ Copyright 2021

> Pod to Service mapping

addPod2ServiceMapping(pod<namespace, name>,
service<namespace, name>)

removePod2ServiceMapping(pod<namespace, name>,
service<namespace, name>)

removePod2ServiceMappings(pod<namespace, name>)
removeService2PodMappings(service<namespace, name>)

lookupPod2ServiceMappings(pod<namespace, name>) =>
{service<namespace, name>*}

lookupService2PodMappings(Service<namespace, name>) =>
{pod<namespace, name>*}

> Pod to ip addresses mapping

addAddress2PodMapping(ipAddress, pod<namespace, name>)
removeAddress2PodMapping(ipAddress, pod<namespace, name>)
removePod2AddressMappings(pod<namespace, name>)

lookupPod2AddressMappings(pod<namespace, name>) =>
{ipAddress*}

lookupAddress2PodMapping(ipAddress) =>
{pod<namespace, name>?€

> Service to ip address mapping

addAddress2ServiceMapping(service<namespace, name>, ipaddress)
removeAddress2ServiceMapping(service<namespace, name>, ipaddress)
removeService2AddressMappings(service<namespace, name>)

lookupService2AddressMappings(service<namespace, name>) =>
{ipAddress*}

IookupAddress2Service|\/Iapping()i Address) =>
{service<namespace, name>.F

<kaloom>

Abstract Network Policy Filter System

> Network Policy primitives

* addNetworkPolicy(
networkPolicy<namespace, name)

* updateNetworkPolicy(
networkPolicy<namespace, name)

¢ removeNetworkPolicy(
networkPolicy<namespace, name)

* allowNewConnectionFromPod(
destinationPod,
sourcePod,
protocol,
destinationPort)

* allowNewConnectionToPod(
sourcePod,
destinationPod,
protocol,
destinationPort)

* allowNewConnectionFromIpAddress(
sourcelpAddress,
destinationPod,
protocol,
destinationPort)

* allowNewConnectionTolpAddress(
sourcePod,
destinationlpAddress,
protocol,
destinationPort)

Kaloom™ Copyright 2021

> This policy filter system is not dependent on
* The number of pod replicas
* The number of pod interfaces
* The number of pod network attachments
* Which interface an ip address is configured too

> The policy filter system is dependent on
* Pod manifests
* Pod labels
* Label selectors in the Network Policies

> It is only updated when

* policy filters are added, updated or removed
* Labels used in policy filters are changed

> It is easy to extend with functionality
* show how policies are related

* which policies that applies towards a
* namespace
* Service
* Workload entities
* individual pods

<kaloom>

Definition of primitives

> removePod > removeService
removePod(pod<namespace, name>) removeService(service<namespace, name>)
{
removePod2ServiceMappings(pod<namespace, name>) removeService2PodMappings(service<namespace, name>)
removePod2AddressMappings(pod<namespace, name>) removeService2AddressMappings(service<namespace,
} name>)
> openPodConnection J
openPodConnection(sourcePod, destinationPod, protocol, port) OpenServiceConnection
{ _ openServiceConnection(sourcePod,
if _ destinationService,
allowNewConnectionToPod(protocol
sourcePod, port) ’
destinationPod, {
protocol,

podSet pods =

destinationPort
) lookupService2PodMappings(destinationService)

&&
allowNewConnectionFromPod(if isEmptySet(pods) then {
destinationPod, return <false, 0>
sourcePlod, }else {
protocol, return openPodConnection(sourcePod,
then destinationPort) pods.SelectOnePod(),
p .) protocol,
return <true, “NewConnection|D"> port)
else }
return <false, 0> }

Kaloom™ Copyright 2021

<kaloom>

openConnectionFromlpAddresses

openConnectionFromlpAddresses(

}

sourcelpAddress,
destinationlpAddress,
protocol,

port)

// find out if addresses maps to pod or services

podSet sourcePod = lookupAddress2PodMapping(sourcelpAddress)

serviceSet destService = lookupAddress2ServiceMapping(destinationlpAddress)
podSet destPod

if destService.isEmpty() then {// find out if destination address maps to a pod
}else { destPod = lookupAddress2PodMapping(destinationlpAddress)
else
destPod = lookupService2PodMappings(destService.selectOnePod())

!
if destPod.isEmpty() then {
if sourcePod.isNotEmpty() &&
allowNewConnectionTolpAddress(sourcePod[0],
destinationlpAddress,
protocol,
destinationPort) then {
return <true, “New ConnectionID”>

return <false, 0>

!
if sourcePod.isEmpty() then {
if allowNewConnectionFromlpAddress(sourcelpAddress,
destinationPod[0],
protocol,
destinationPort) then {
return <true, “New ConnectionID”>

}

if openPodConnection(sourcePod[0],
destinationPod[0],
protocol,
destinationPort) then {
return <true, “New ConnectionID”>

}else {

}

}
return <false, 0>

Kaloom™ Copyright 2021

<kaloom>

