
Kaloom™ Copyright 2020

Kubernetes Networking
semantics
Per Andersson

Kaloom™ Copyright 2020

Abstraction of K8s networking

The manifest used to define Kubernetes entities are typically free of any
sort of IP address information.
• Service
• Network Policy
• Pod
• Workload Resources

• Deployment
• ReplicaSet
• StatefulSet
• DaemonSet
• Job

The basic semantics of Kubernetes and the information found in the
manifest defines the connectivity rules and behavior

https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/job/

Kaloom™ Copyright 2020

Namespace, Name and Identity

All entities belong to a namespace

All entities have a name that is unique in that namespace

All entities have a unique identifier (UID)

The identity can be simplified to type<namespace, name>
• namespace<name>
• service<namespace, name>
• networkPolicy<namespace, name>
• pod<namespace, name>
• deployment<namespace, name>
• replicaSet<namespace, name>
• daemonSet<namespace, name>
• job<namespace, name>

Kaloom™ Copyright 2020

Pod lifecycle and Pod Communication
The “Workload Resources” are there to manage and control Pods and are not
basic entities from a communication standpoint, we only need to consider
• Pod
• Network Policy
• Service

The Pod life cycle can be abstracted to
• addPod(pod<namespace, name>)
• removePod(pod<namespace, name>)

Kubernetes assumes that every pod can communicate with all other pod as long
as there is no network policy that forbids it.
The Pod communication can be abstracted to two connection primitives
• openPodConnection(sourcePod, destinationPod, protocol, port) =>

<true, connectionId> or <false, 0>
• closePodConnection(connectionId)

Kaloom™ Copyright 2020

Network Policy
The NetworkPolicy spec has all the information needed to define a particular network policy in the given namespace.

• podSelector: Each NetworkPolicy includes a podSelector which selects the grouping of pods to which the policy applies. An
empty podSelector , ”podSelector: {} selects all pods in the namespace.

• policyTypes: Each NetworkPolicy includes a policyTypes list which may include either Ingress, Egress, or both. The policyTypes
field indicates whether or not the given policy applies to ingress traffic to selected pod, egress traffic from selected pods, or
both. If no policyTypes are specified on a NetworkPolicy then by default Ingress will always be set and Egress will be set if the
NetworkPolicy has any egress rules.

• ingress: Each NetworkPolicy may include a list of whitelist ingress rules. Each rule allows traffic which matches both the from and
ports sections.

• egress: Each NetworkPolicy may include a list of whitelist egress rules. Each rule allows traffic which matches both the to and
ports sections.

to and from selectors, there are four kinds of selectors that can be specified in an ingress from section or egress to
section:

• podSelector: This selects particular Pods in the same namespace as the NetworkPolicy which should be allowed as ingress
sources or egress destinations.

• namespaceSelector: This selects particular namespaces for which all Pods should be allowed as ingress sources or egress
destinations.

• namespaceSelector and podSelector: A single to/from entry that specifies both namespaceSelector and podSelector selects
particular Pods within particular namespaces.

• ipBlock: This selects particular IP CIDR ranges to allow as ingress sources or egress destinations. These should be cluster-external
IPs, since Pod IPs are ephemeral and unpredictable.

5

https://kubernetes.io/docs/concepts/services-networking/network-policies/

Kaloom™ Copyright 2020

Simple Network Policy reference model

6

Pods selected by the podSelector

Namespace: Z
POD: zz01Namespace: A

POD: aa01

“podSelector”
Pods selected by the
podSelector

Ingress

From:
Selector 001

From:
Selector 011

Egress

To:
Selector 001

To:
Selector 011

Ingress Sessions

Permitted Sessions

Pods selected by either the
podSelector, nameSpaceSelector or both

Kaloom™ Copyright 2020

Abstract Network Policy Filter System
addNetworkPolicy(

networkPolicy<namespace, name)

updateNetworkPolicy(
networkPolicy<namespace, name)

removeNetworkPolicy(
networkPolicy<namespace, name)

allowNewConnectionFromPod(
destinationPod,
sourcePod,
protocol,
destinationPort)

allowNewConnectionToPod(
sourcePod,
destinationPod,
protocol,
destinationPort)

The ipBlock part of to and from selectors is ignored for
now

This policy filter system is not dependent on
• The number of pod replicas
• The number of pod interfaces
• The number of pod network attachments
• Which interface an ip address is configured too

The policy filter system is dependent on
• Pod manifests
• Pod labels
• Label selectors in the Network Policies

It is only updated when
• policy filters are added, updated or removed
• Labels used in policy filters are changed

It is easy to extend with functionality
• show how policies are related
• which policies that applies towards a

• namespace

• Service

• Workload entities

• individual pods

Kaloom™ Copyright 2020

Pod Communication with Network Policies
openPodConnection must be updated to
support the NW policy check

openPodConnection(sourcePod, destinationPod, protocol, port)
{

if
allowNewConnectionToPod(

sourcePod,
destinationPod,
protocol,
destinationPort)

&&
allowNewConnectionFromPod(

destinationPod,
sourcePod,
protocol,
destinationPort)

then

return <true, “NewConnectionID”>

else
return <false, 0>

}

The allowNewConnectionToPod is
used to check outgoing egress
connectivity from the “sourcePod”
• This is done by matching the

“sourcePod” towards the
NetworkPolicy PodSelector and the
“destinationPod”, “protocol” and “port”
towards the NetworkPolicy egress to
rules

The allowNewConnectionToPod is
used to check incomming ingress
connectivity towards the
“destinationPod”
• This is done by matching the

“destinationPod” towards the
NetworkPolicy PodSelector and the
“sourcePod”, “protocol” and “port”
towards the NetworkPolicy ingress
from rules

Kaloom™ Copyright 2020

Service lifecycle and Service to Pod mapping
Service is the basic construct used to load balance Kubernetes applications.
• It is built in and works in conjunction with conjunction with workload resources like

Deployment, StatefulSet and DaemonSet to provide application scalability and load balancing.
• A Service is mapped to a set of Pods by using label and label selectors, the mapping can be

simplified though by defining a Service <-> Pod mapping service

The Service life cycle can be abstracted to
• addService(service<namespace, name>)
• removeService(servcice<namespace, name>)

The mapping service can be abstracted to six primitives
• addPod2ServiceMapping(pod<namespace, name>, service<namespace, name>)
• removePod2ServiceMapping(pod<namespace, name>, service<namespace, name>)
• removePod2ServiceMappings(pod<namespace, name>)
• removeService2PodMappings(service<namespace, name>)
• lookupPod2ServiceMappings(pod<namespace, name>) => {service<namespace, name>*}
• lookupService2PodMappings(Service<namespace, name>) => {pod<namespace, name>*}

Kaloom™ Copyright 2020

Pod and Service lifecycle updates and service to pod
communication

Pod lifecycle: removePod must clean up the
Service mappings

removePod(pod<namespace, name>)
{

removePod2ServiceMappings(pod<namespace, name>)
}

Service lifecycle: removeService must clean
up the Pod mappings

removeService(service<namespace, name>)
{

removeService2PodMappings(service<namespace, name>)
}

Service to pod communication can be
abstracted to one primitive

• openServiceConnection(
sourcePod,
destinationService,
protocol,
port)

=> <true, connectionId> or <false, 0>

OpenServiceConnection can then
specified as

openServiceConnection(sourcePod,

destinationService,
protocol,
port)

{
podSet pods =
lookupService2PodMappings(destinationService)

if isEmptySet(pods) then
return <false, 0>

else
return openPodConnection(sourcePod,

pods.SelectOnePod(),
protocol,
port)

}

Kaloom™ Copyright 2020

Basic Kubernetes Network Semantics

The basic Network semantics can be summarized in
• All Pods can communicate with each other, unless there is a network policy rule that

forbids it

• A Service can load balance connectivity towards a set of Pods

• The Network Policy regulate connectivity between Pods

Kaloom™ Copyright 2020

What is missing

Pod with single network attachment towards one network with single IP
address assignment

Pod with multi network attachment towards one or several networks with
single IP Addresses assignment for each network attachment

Pod with multi network attachment towards one or several networks with
multiple IP Addresses assignment for each network attachment

Overlapping address spaces

Dynamic networking
• Add/remove network

• Pod with support for dynamic network attachment and detachment

• Pod with support for dynamic interface address assignment and removal

Kaloom™ Copyright 2020

Step 1:Extend model with support for single network and
pods with single Network Attachment with single IP address

Every Pod should have one IP address added to one interface that is
attached to a common network

Every Service can be assigned one Virtual IP address

A Network Policy must support the IpBlock in egress and ingress rules

Add support for connectivity to and from cluster external entities

Kaloom™ Copyright 2020

Map ip addresses to Pod And Services

Add a mapping service from Pod to ip addresses
• addPod2AddressMapping(pod<namespace, name>, ipAddress)

• removePod2AddressMapping(pod<namespace, name>, ipAddress)

• removePod2AddressMappings(pod<namespace, name>)

• lookupPod2AddressMappings(pod<namespace, name>) => {ipAddress*}

• lookupAddress2PodMapping(ipAddress) => {pod<namespace, name>?}

Add a mapping service from Service to ip addresses
• addService2AddressMapping(service<namespace, name>, ipaddress)

• removeService2AddressMapping(service<namespace, name>, ipaddress)

• removeService2AddressMappings(service<namespace, name>)

• lookupService2AddressMappings(service<namespace, name>) => {ipAddress*}

• lookupAddress2ServiceMapping(ipAddress=> {service<namespace, name>?}

Kaloom™ Copyright 2020

New primitives and lifecycle updates

Communication must be extended with
two new primitives

• openConnectionWithIpAddresses(sourceIpAddress,
destinationIpAddress,
protocol,
port) => <true, connectionId> or <false, 0>

Network Policy system must be extended
with two more primitives

• allowNewConnectionFromIpAddress(
sourceIpAddress,
destinationPod,
protocol,
destinationPort)

• allowNewConnectionToIpAddress(
sourcePod,
destinationIpAddress,
protocol,
destinationPort)

Pod lifecycle: removePod must clean up the
Address mappings

removePod(pod<namespace, name>)
{

removePod2ServiceMappings(pod<namespace, name>)
removePod2AddressMappings(pod<namespace, name>)

}

Service lifecycle: removeService must clean up
the Address mappings

removeService(service<namespace, name>)
{

removeService2PodMappings(service<namespace, name>)
removeService2AddressMappings(service<namespace, name>)

}

Kaloom™ Copyright 2020

Definition of openConnectionFromIpAddresses
openConnectionFromIpAddresses(

sourceIpAddress,
destinationIpAddress,
protocol,
port)

{
// find out if addresses maps to pod or services
podSet sourcePod = lookupAddress2PodMapping(sourceIpAddress)
serviceSet destService = lookupAddress2ServiceMapping(destinationIpAddress)
podSet destPod

if destService.isEmpty() then {// find out if destination address maps to a pod
destPod = lookupAddress2PodMapping(destinationIpAddress)

} else {
destPod = lookupService2PodMappings(destService.selectOnePod())

}
if destPod.isEmpty() then {

if sourcePod.isNotEmpty() &&
allowNewConnectionToIpAddress(sourcePod[0],

destinationIpAddress,
protocol,
destinationPort) then {

return <true, “New ConnectionID”>
}
return <false, 0>

}
if sourcePod.isEmpty() then {

if allowNewConnectionFromIpAddress(sourceIpAddress,
destinationPod[0],
protocol,
destinationPort) then {

return <true, “New ConnectionID”>
}

} else {
if allowNewConnectionFromPod(sourcePod[0],

destinationPod[0],
protocol,
destinationPort) then {

return <true, “New ConnectionID”>
}

}
return <false, 0>

}

Important to understand that everything
is based on that
• Addresses are unique

• An address can only be used in one mapping

From that it is possible to conclude several interesting things
• It does not matter how many addresses that are mapped to a Pod!!!

• The only thing that matters is that lookupAddress2PodMapping only can return
zero or one Pod

• The number of addresses returned by lookupPod2AddressMapping is irrelevant for the
Kubernetes Network Semantic

The Kubernetes Network semantics is not changed by

• The number networks used in the system

• The number of network attachments in a pod

• The number of networks attached to a pod

• The number of IP addresses assigned to an interface/network attachment

That said, the network environment in any multi homed Pod
becomes more challenging

• How to handle routes, VRFs….

Kaloom™ Copyright 2020

Step 2:Extend model with support for multi network and pods with
multi–Network Attachments with multiple IP addresses

Every Pod must have at least IP addresses added to an interface that is
attached to a common “cluster” network

Every Service can be assigned one Virtual IP address

A Network Policy must support the IpBlock in egress and ingress rules

Add support for connectivity to and from cluster external entities

A Pod can have multiple network attachments towards one or more
networks

A Pod can have one or more ip addresses assigned to each Network
attachment

This is already supported by the model

Kaloom™ Copyright 2020

Pod and Service Abstractions
Pod lifecycle

• addPod(pod<namespace, name>)
• removePod(pod<namespace, name>)

Service lifecycle
• addService(service<namespace, name>)
• removeService(servcice<namespace, name>)

Pod and Service Communication
• openPodConnection(sourcePod,

destinationPod,
protocol,
port) =>

<true, connectionId> or <false, 0>
• openServiceConnection(sourcePod,

destinationService,
protocol,
port) =>

<true, connectionId> or <false, 0>
• openConnectionWithIpAddresses(

sourceIpAddress,
destinationIpAddress,
protocol,
port) =>

<true, connectionId> or <false, 0>
• closePodConnection(connectionId)

Pod to Service mapping
• addPod2ServiceMapping(pod<namespace, name>,

service<namespace, name>)
• removePod2ServiceMapping(pod<namespace, name>,

service<namespace, name>)

• removePod2ServiceMappings(pod<namespace, name>)

• removeService2PodMappings(service<namespace, name>)
• lookupPod2ServiceMappings(pod<namespace, name>) =>

{service<namespace, name>*}

• lookupService2PodMappings(Service<namespace, name>) =>
{pod<namespace, name>*}

Pod to ip addresses mapping
• addPod2AddressMapping(pod<namespace, name>, ipAddress)

• removePod2AddressMapping(pod<namespace, name>, ipAddress)
• removePod2AddressMappings(pod<namespace, name>)

• lookupPod2AddressMappings(pod<namespace, name>) =>
{ipAddress*}

• lookupAddress2PodMapping(ipAddress) =>
{pod<namespace, name>?}

Service to ip address mapping
• addService2AddressMapping(service<namespace, name>, ipaddress)
• removeService2AddressMapping(service<namespace, name>, ipaddress)

• removeService2AddressMappings(service<namespace, name>)

• lookupService2AddressMappings(service<namespace, name>) =>
{ipAddress*}

• lookupAddress2ServiceMapping(ipAddress) =>
{service<namespace, name>?}

Kaloom™ Copyright 2020

Abstract Network Policy Filter System
Network Policy primitives

• addNetworkPolicy(
networkPolicy<namespace, name)

• updateNetworkPolicy(
networkPolicy<namespace, name)

• removeNetworkPolicy(
networkPolicy<namespace, name)

• allowNewConnectionFromPod(
destinationPod,
sourcePod,
protocol,
destinationPort)

• allowNewConnectionToPod(
sourcePod,
destinationPod,
protocol,
destinationPort)

• allowNewConnectionFromIpAddress(
sourceIpAddress,
destinationPod,
protocol,
destinationPort)

• allowNewConnectionToIpAddress(
sourcePod,
destinationIpAddress,
protocol,
destinationPort)

This policy filter system is not dependent on
• The number of pod replicas
• The number of pod interfaces
• The number of pod network attachments
• Which interface an ip address is configured too

The policy filter system is dependent on
• Pod manifests
• Pod labels
• Label selectors in the Network Policies

It is only updated when
• policy filters are added, updated or removed
• Labels used in policy filters are changed

It is easy to extend with functionality
• show how policies are related
• which policies that applies towards a

• namespace
• Service
• Workload entities
• individual pods

Kaloom™ Copyright 2020

Definition of primitives
removePod

removePod(pod<namespace, name>)
{

removePod2ServiceMappings(pod<namespace, name>)
removePod2AddressMappings(pod<namespace, name>)

}

openPodConnection
openPodConnection(sourcePod, destinationPod, protocol, port)
{

if
allowNewConnectionToPod(

sourcePod,
destinationPod,
protocol,
destinationPort)

&&
allowNewConnectionFromPod(

destinationPod,
sourcePod,
protocol,
destinationPort)

then
return <true, “NewConnectionID”>

else
return <false, 0>

}

removeService
removeService(service<namespace, name>)
{

removeService2PodMappings(service<namespace, name>)
removeService2AddressMappings(service<namespace,

name>)

}

OpenServiceConnection
openServiceConnection(sourcePod,

destinationService,
protocol,
port)

{
podSet pods =
lookupService2PodMappings(destinationService)

if isEmptySet(pods) then {
return <false, 0>

} else {
return openPodConnection(sourcePod,

pods.SelectOnePod(),
protocol,
port)

}
}

Kaloom™ Copyright 2020

openConnectionFromIpAddresses
openConnectionFromIpAddresses(

sourceIpAddress,
destinationIpAddress,
protocol,
port)

{
// find out if addresses maps to pod or services
podSet sourcePod = lookupAddress2PodMapping(sourceIpAddress)
serviceSet destService = lookupAddress2ServiceMapping(destinationIpAddress)
podSet destPod

if destService.isEmpty() then {// find out if destination address maps to a pod
destPod = lookupAddress2PodMapping(destinationIpAddress)

} else {
destPod = lookupService2PodMappings(destService.selectOnePod())

}
if destPod.isEmpty() then {

if sourcePod.isNotEmpty() &&
allowNewConnectionToIpAddress(sourcePod[0],

destinationIpAddress,
protocol,
destinationPort) then {

return <true, “New ConnectionID”>
}
return <false, 0>

}
if sourcePod.isEmpty() then {

if allowNewConnectionFromIpAddress(sourceIpAddress,
destinationPod[0],
protocol,
destinationPort) then {

return <true, “New ConnectionID”>
}

} else {
if openPodConnection(sourcePod[0],

destinationPod[0],
protocol,
destinationPort) then {

return <true, “New ConnectionID”>
}

}
return <false, 0>

}

