
Clover: cloud native 
computing for NFV

Wenjing Chu

Stephen Wong

10/25/2017



What is Clover?

• To support VNFs developed as cloud native applications.

• “Cloud Native” has various definitions, e.g.

• The 12 factor app: https://12factor.net/
• CNCF definition: https://www.cncf.io/about/charter/

• Container packaged (e.g. Docker)
• Dynamically managed (e.g. Kubernetes)
• Micro-services oriented (our focus)

• Continuous delivery (our focus)

• In OPNFV, projects like container4nfv are covering both container (e.g. docker) and orchestration (e.g. k8s or openstack+k8s or 
other variants) infrastructure. These are out of scope, and it is a dependency for Clover.

• In Clover, we focus on:

• Micro-service: employs loosely coupled microservices which are deployed within lightweight container environments that 
employ low-overhead orchestration, runtime and networking services

• Continuous delivery (CD): Written and released using lean DevOps methodologies. Operates on continuous release cycles, in 
that new features can be independently developed, tested and then released/deployed.

https://12factor.net/
https://www.cncf.io/about/charter/


Problems to solve (1)
• Monolithic infrastructure slows development and constrains scalability and reliability, so the industry has been trending on micro-

services based architecture [micro-services].

• Growth of micro-services, however, often leads to ‘container sprawl’: service-to-service communication becomes unwieldy and 
hard to manage; integration and testing permutations quickly multiply; uniform policy enforcement becomes a lot harder…

• These issues can be esp. prominent in service provider and NFV use cases.

• A dedicated service layer (Service Mesh) agnostic to individual app and deployment and built on top of k8s’s existing pod and
service constructs and orchestrator functions, is designed to overcome these challenges.

- A service mesh to handle/manage internal 
service-to-service communications

- Dynamic request routing on live deployment 
e.g. canary, A/B testing, rollout etc.

- Fault tolerance, e.g. circuit breaker
- Richly featured service discovery and load 

balancing
- Global control and policy mechanisms that 

are made visible to management higher 
layer (e.g. mano)

- Globally distributed diverse environments
Image credit: Appcentrica.

Container sprawl

https://en.wikipedia.org/wiki/Microservices


Problems to solve (2)
• The service providers found operating a large set of micro-services challenging without a common set of 

tools that give them visibility and traceability. This challenge is esp. relevant when applications are 
developed independently (by different teams, vendors or communities), or e.g. legacy software components 
are containerized and brought in to the mix. A common set of reusable services, such as monitoring, logging, 
tracing…, agnostic to development and deployment environments is needed.

• NFV specific use cases demand additional common utility services that are outside of the general computing 
applications. Such reusable services may include network tracing, nat, dpi etc. Storage related common 
services for NFV are also an area to investigate.

Container / Pod boundary

microService A 
(v1.0, dev)

monitor

logging

tracing



Problems to solve (3)
• Continuous delivery – a core benefit of cloud native applications is that its 

components (micro-services) can be updated live independently. Currently CI/CD 
pipeline in OPNFV largely stops at CI level. 

• Building safe, low risk, platform independent and at scale continuous deployment 
is an important challenge facing NFV use cases. We need to address it in 
collaboration with xci/releng and upstream e.g. cncf cross-cloud ci.

Continuous delivery



Problems to solve (4)

• NFV specific use cases introduce new challenges to solve that are different 
from the general cloud native cases. We need to investigate and identify 
the gaps and come up with solutions.
• E.g. network needs for gateway (intermediate systems) common in NFV use cases. 

Potential network performance issues, security issues. Investigate storage related 
issues.

• Investigate edge related challenges, in collaboration with edge related projects.

• Investigate enhancements or additional common services for NFV

• Interfacing with other OPNFV or LFNF projects (e.g. ONAP)

• Best practice of developing cloud native VNFs

• Contribute upstream for the identified NFV specific features.



Scope and Dependencies

Infrastructure (bare metal, 
VM, edge devices etc.)

Container environment 
(e.g. docker, others, 
unikernels…)

Dynamic 
management/VIM

(Kubernetes)
(K8s+Openstack)

(Others)

Cloud native NFV in 
micro-services 
architecture

Out of scope.
Rely on existing 
projects and upstream

Main focus area:
- Service mesh
- Common services
- Continuous delivery
- NFV gaps and 

features
Dependencies:
Pharos
Lab-aaS
Releng/xci
Container4nfv
Installers
K8s-* scenarios
Test projects
Doc …

- Pharos pod:
- 1 identified
- 1 more for long 

duration test 
desirable later



Micro-
service1

Micro-
service 2

Micro-
service 3

Micro-
service 4

Reusable 

Services, e.g.

Orchestration

Continuous 

delivery, e.g.

Micro-service service mesh, e.g.

Clover framework

Container

Out of scope; existing projects



Some of the target computing environments

Tiny Small
(Edge)

Medium
(Access/regional)

Huge
(Global data center)

Opnfv lab-aaS

OPNFV



Deliverables

• A new scenario based on k8s integrating micro-service oriented core 
services
• Service mesh
• Monitoring, logging, tracing
• Networking (from infrastructure), storage
• Additional services

• Cloud native CD

• Automated testing of resiliency, scalability …

• Example use cases: e.g. vCPE/uCPE, vIMS, vCDN, …

• Identifying and solving NFV specific problems

• Documentation



Project proposal

• https://wiki.opnfv.org/display/PROJ/Clover

• Initial release: Fraser

• Main contributions to OPNFV
• Provide a new cloud native micro-service oriented scenario for NFV

• Provide a set of common services

• Provide tooling to support cloud native continuous delivery at scale

• Identify and solve NFV specific issues in upstream

• NFV use case examples and best practices of developing cloud native VNFs

• Looking for interested contributors, feedbacks, ideas

https://wiki.opnfv.org/display/PROJ/Clover

