
OPNFV Release
Process 2.0 (DRAFT)

Considerations

› Reconcile CNTT requirements with OPNFV
› Simplify and reduce the number of milestones
› Support OPNFV level requirements planning
› Improve release planning at the project level
› Improve accountability across all project types
› Enable project self releases independent of OPNFV cadence
› Increase community engagement in the release process

12/3/19 2

Assumptions
› Per the mission statement, OPNFV has objectives that require a coordinated release

effort, as directed by the TSC, and is not merely a collection of siloed projects.
› The OPNFV TSC supports a regular OPNFV release
› Supporting CNTT requirements will be the highest priority for OPNFV for the

foreseeable future
› Projects may veto requirements that affect their project and engage in negotiations

with requirements stakeholders over blocking issues, such as resource constraints.
› The TSC wishes to continue to include projects that are consistent with OPNFV

objectives but are not integrated with CNTT related work product.
› This release process is a starting point and is expected to evolve over time as details

are added and as the community gains experience implementing it.

3

https://www.opnfv.org/about/mission

Overview
› This release process proposal is for a “meta-release,” or a “release of

releases”.
› It establishes a requirements process that enables OPNFV to meet

stakeholders’ requirements that may span multiple projects.
› However, it also enables individual projects or groups of projects to

follow their own release model (e.g., continuous delivery) and to
self-release at their own cadence, via a self-release process.

› Projects which are dependencies of CNTT work product will follow a
gating process, overseen by an integration project.

4

OPNFV Level Requirements Planning

› Requirements planning is a critical part of this release process
proposal and represents the biggest change from the previous
process

› Why is requirements planning important?
› We need a way to address CNTT requirements affecting multiple

projects.
› We need a way to agree upon and to prioritize broad requirements

that help to advance our mission, or to respond to a concern that
affects most projects.
› Example: Python 3 migration

5

OPNFV Level Requirements Planning
› Overview

› Requirements working group or subcommittee gathers and vets
requirements from multiple stakeholders and makes recommendation to the
TSC

› OPNFV Release Requirements are reviewed and approved by TSC at each
milestone
› Requirement is de-scoped if not approved by the TSC

› Projects agree to prioritize OPNFV level requirements over other work
› Each requirement has an owner and is documented in JIRA
› TSC approval at M1 requires support commitment for each requirement

from relevant projects
› Project support is documented in project release plan

6

What does “vetting” mean

› A requirements group is needed to vet proposed requirements. Why?
› We want to focus our time and energy in a given release cycle on

requirements that:
› Are actionable, i.e., clearly defined with sufficient detail for implementation
› Are within scope, and meet OPNFV objectives, as defined by the Charter, the

Governing Board, and the TSC
› Are technologically feasible
› Have support and sufficient resources in the affected projects as agreed to

by the PTL
› Have priority relative to other eligible requirements

› The requirements group will apply the above criteria to requirements
proposed by stakeholders and make a final proposal to the TSC.

7

More on verifying support among affected projects

› The requirements group helps stakeholders identify and contact the affected
projects

› The affected projects consider the proposed requirement and indicate whether
they will support the requirement, or not

› If the project does not support the requirement, for example, due to a shortage
of resources, then this may start a negotiation between the stakeholder and the
project.

› If the project does not support the requirement proposal, then the requirement
will not become part of the release requirements.

› Note that the requirements group facilitates communication with affected
projects. It’s up to the stakeholder to determine support.

8

Requirements Subcommittee

› Review requirement proposals submitted by stakeholders
› Verify that requirements have support from affected projects
› Verify that requirements have an owner and are well documented in

JIRA
› Allocate requirements to current or future releases
› Recommend a set of prioritized requirements to the TSC for

approval for the current release

9

Start

Stakeholder proposes
requirement

Allocate to future
release

Affected projects
consider requirement

Prioritized for
current

release?

Technologically
feasible?

Within scope
of OPNFV?(1)

End

Identify affected projects

Requirement
accepted?

Yes

Yes

Yes

Requirement
is actionable?

Yes

No

No

Negotiation?

Stakeholder
response

Yes

No

Requirement
proposed to TSC

Yes

Requirement proposal
rejected

No

No

No

No

10

(1) Mission Statement

https://www.opnfv.org/about/mission

Requirements Owner Responsibility
› The requirements owner is an active participant throughout the release.
› The requirements owner will:

› Prepare and present a detailed, well defined requirement proposal for
consideration by the requirements subcommittee (documented in JIRA).

› Respond to questions and direction from the requirements subcommittee
› Work with the requirements subcommittee to determine which OPNFV

projects are affected by the requirement
› Engage with the affected projects to determine whether they will support the

requirements. If possible, negotiate issues such as resource constraints.
› Once the requirement is accepted by the TSC for the release, monitor and

report status back to the TSC at each milestone, or upon request.
› Determine a test plan and test lead, as necessary.
› Work with the projects to overcome blocking issues in order to successfully

complete the requirement for the release.

11

Project Release Plans

› Template based
› Reviewed and approved as part of release process
› Commitment to OPNFV-level requirements

› Document how requirement will be met
› Other project objectives for the release
› Specify deliverables
› All work documented in JIRA and assigned to release

12

Integrated vs. Non-Integrated Projects

› Projects that are dependencies of CNTT work product (i.e.,
“Integrated”) will follow a process that includes gating and monitoring
by the integration test project.

› Projects that are not part of CNTT work product (i.e.,
non-integrated), will follow a separate process that does not include
gating, or monitoring by the integration test project.

13

Non-Integrated Projects
› Definition

› Not a dependency of work product related to CNTT requirements
› Requirements

› OPNFV repo
› CI using OPNFV resources
› Documentation and release notes
› Self verification (project asserts readiness to release)

14

Self Release

› All projects will maintain internal versioning
› OPNFV release versioning will follow current practice of using the

prefix “opnfv-” on version numbers to distinguish them.
› Projects will be required to contribute to OPNFV releases,

approximately every 6 months, that meet OPNFV requirements
established by the TSC and the release process.

› In addition, projects may release independently, using a common
Self-Release Process

› The self-release process will enable community access to self-release
work product in a common way

15

Documentation

› The current documentation is organized around the traditional
OPNFV concept of “scenarios,” which is no longer a prominent aspect
of OPNFV.

› Need to reconcile CNTT documentation with OPNFV documentation
organization and process.

› Ask the DOCS project to lead an effort, along with other
stakeholders, to develop and propose new documentation structure to
the TSC.

› Continue current practice of having milestone requirements for
preliminary and final documentation as part of release process.

16

Integration and Gating

› “Integrated” projects will be subject to gating.
› An integration project will track project test and integration status,

and will report this information to the release manager and to the
TSC.

› Release Candidate milestones will be based on gating status and
approval of the integration project.

17

Milestones

› Projects must complete tasks at each milestone to be approved to proceed in the
release

› Requirements are evaluated at each milestone to determine whether they remain
feasible

› Milestones:
› M0 - Start of Release
› M1 - Planning Complete
› M2 - Readiness Review
› RC0 - First Release Candidate
› RCn - Final Release Candidate

18

Milestones: Planning

› Requirements submitted, reviewed, and approved by TSC
› Project release plans completed, reviewed, and approved
› All work planned for the release is documented in JIRA and assigned

to the release (fix version field)

19

Milestones: Readiness Review

› Resolve high priority JIRA issues
› Complete preliminary documentation
› Marketing

› Complete project update message on designated wiki page:
› 1. What has changed
› 2. Why significant/beneficial to a user/consumer of OPNFV?

› A release marketing messaging document will be derived from these
project updates and presented to TSC for review/input

20

Milestones: Release Candidate 0, 1, …, x

› Approval by integration manager that integration requirements have
been met

› Verify release plan, including all planned testing, has been completed
› Prepare and verify release artifacts
› Complete final documentation
› Complete tagging
› Marketing feedback integrated and presented to the TSC

21

ToDo - Prerequisites for initiating new process

› Establish requirements working group
› Create requirements JIRA template
› Establish integration management project
› Determine new documentation layout/organization
› Develop self-release process
› Develop project release plan template

22

Frequently Asked Questions (FAQ)

Q: Does this process impose a lot of new requirements on projects and PTLs?
A: This process asks that projects do the following new things:
1. Complete a project release plan based on a template, rather than free-form
2. Review stakeholder requirement proposals if they affect the project
3. Agree to prioritize OPNFV requirements (previously approved by the project) ahead of

project plans.

Example: CNTT submits a requirement that requires work by Functest. The requirement is
agreed to by Functest during the requirements phase, approved by the requirements
subcommittee, and approved by the TSC. Meanwhile, Functest also has plans to do some
refactoring as part of the release. In this case, Functest agrees to prioritize the CNTT
requirement ahead of their plans for refactoring.

23

Frequently Asked Questions (FAQ)

Q: Does this process require projects to follow a “waterfall” release
model?
A: No, as mentioned at the start of the presentation, this release proposal
is for a meta-release, or release of releases. The process does not
require individual projects to follow a particular release model. Projects,
or groups of projects, are free to follow whatever model they choose. In
addition, outside of the OPNFV releases, projects are free to set their
own cadence and use a common self-release process.

24

Frequently Asked Questions (FAQ)

Q: Does the TSC impose stakeholder requirements on the projects?
A: No. As described earlier in the presentation, projects have an integral
role in determining requirements for the release. If a stakeholder
requirement affects a given project, that project MUST agree to the
requirement before it becomes a release requirement. However, once
the project agrees to the stakeholder requirement, it also agrees to
prioritize that requirement over other work.

25

BACKUP

Recommendation
to TSC

Requirements
Working Group

OPNFV Level Requirements Planning (M1)

Requirement 2

Requirement 1

Requirement 3

Requirement 4

Requirement 5

CNTT

EUAG

TAC

Community

Proj 2Proj 1 Proj 3 Proj 4 Proj 5

✅✅

✅

✅

✅

✅

✅

✅⌧

⌧ ✅

✅✅✅

✅ ✅ ✅

⌧

Recommend

Recommend

Recommend

