
OPNFV Release
Process 2.0

Considerations
› Reconcile CNTT requirements with OPNFV
› Decrease emphasis on installers
› Simplify and reduce the number of milestones
› Support OPNFV level requirements planning
› Improve release planning at the project level
› Improve accountability across all project types
› Enable independent releases
› Increase community engagement in the release process

12/3/19 2

OPNFV Level Requirements

› Why is this important?
› We need a way to agree upon and to prioritize broad requirements

that help to advance our mission, or to take respond to a concern
that affects most projects.
› Example: Python 3 migration

› We need a way to address CNTT requirements affecting multiple
projects.

OPNFV Level Requirements

› Overview
› OPNFV Release Requirements approved by TSC at M1/2/3

› Requirement is de-scoped if not approved by the TSC
› Projects agree to prioritize OPNFV level requirements
› Each requirement has an owner and is documented in JIRA
› TSC approval at M1 requires support commitment for each requirement

from relevant projects
› Support documented in project release plan

OPNFV Level Requirements

› Requirements Working Group or Subcommittee
› Gathers requirements recommendations from community
› Allocates requirements to releases
› Ensures that requirements have support from affected projects
› Ensures that requirements have an owner and are well documented

in JIRA
› Recommends a set of prioritized requirements to the TSC for

approval for the current release

Recommendation
to TSC

Requirements
Working Group

OPNFV Level Requirements

Requirement 2

Requirement 1

Requirement 3

Requirement 4

Requirement 5

CNTT

EUAG

TAC

Community

Proj 2Proj 1 Proj 3 Proj 4 Proj 5

✅✅

✅

✅

✅

✅

✅

✅⌧

⌧ ✅

✅✅✅

✅ ✅ ✅

⌧

Recommend

Recommend

Recommend

Project Release Plans

› Template based
› Reviewed and approved as part of release process
› Commitment to OPNFV-level requirements

› Document how requirement will be met
› Other project objectives for the release
› Specify deliverables
› All work documented in JIRA and assigned to release

Independent Projects
› Definition

› Not dependent on, or a dependency of, any other project in OPNFV
› Self-declared (if applicable)
› Requirements

› OPNFV repo
› CI using OPNFV resources
› Documentation (TBD) and release notes
› Self verification (project asserts readiness to release)

Independent Release

› All projects will maintain internal versioning
› OPNFV release versioning will follow current practice of using the

prefix “opnfv-” on version numbers to distinguish them.
› Projects will be required to contribute to OPNFV releases,

approximately every 6 months, that meet OPNFV requirements
established by the TSC and the release process.

› In addition, projects may release independently, using a Self-Release
Process (TBD)

Documentation

› The current documentation is organized around the traditional
OPNFV concept of “scenarios,” which is no longer a prominent
aspect of OPNFV.

› Need to reconcile CNTT documentation with OPNFV
documentation organization and process.

› Ask the DOCS project lead an effort, along with other stakeholders,
to develop and propose new documentation structure to the TSC.

› Continue current practice of having milestone requirements for
preliminary and final documentation as part of release process.

Integration and Gating

› An integration project will track project test and integration status,
and will report this information to the release manager and to the
TSC.

Milestones

› Projects must complete tasks at each milestone to be approved to proceed in the
release

› Requirements are evaluated at each milestone to determine whether they remain
feasible

› Milestones:
› M0 - Start of Release
› M1 - Planning
› M2 - API / Functional Freeze
› M3 - Code Freeze
› RC0 - First Release Candidate
› RCn - Final Release Candidate

Milestones: Planning (M0 ⇒ M1)

› Requirements gathered, reviewed, and approved by TSC
› Project release plans completed, reviewed, and approved
› All work planned for the release is documented in JIRA and assigned

to the release (fix version field)
› Risks documented

Milestones: API & Functional Freeze (M1 ⇒ M2)

› Resolve integration blocking issues
› Resolve license scan issues
› Update risks documentation

Milestones: Code Freeze (M2 ⇒ M3)

› Resolve high priority JIRA issues
› Complete preliminary documentation
› Update risks documentation

Milestones: Release Candidate 0, 1, …, x

› Verify release plan, including all planned testing, has been completed
› Resolve high priority JIRA issues
› Prepare and verify release artifacts
› Complete final documentation
› Complete tagging

ToDo

› Establish requirements working group
› Establish integration management project
› Determine new documentation layout/organization
› Develop self-release process
› Develop project release plan template

