
Created a ubuntu 20 LTS VM with 2 Network interfaces

Writing a program to drop all packets.
Building and viewing a BPF(Berkeley Packet Filter)
object.
Loading a BPF object.
Show information on a running BPF object.
Unloading a BPF object.

1.
2.

3.
4.
5.

Task we're going to perform:

This command is for Rad Hat Enterprise Linux8 (RHEL8)
so we have to modify this command to be used in ubuntu

Command to perform this task on ubuntu 20

$ sudo apt install clang llvm libelf-dev libpcap-dev gcc-multilib
 build-essential

$ sudo apt install linux-tools-$(uname -r)

$ sudo apt install linux-headers-$(uname -r)

$ sudo apt install linux-tools-common linux-tools-generic
$ sudo apt install tcpdump

eBPF programs are
written in CLang

Created a file xdp_drop.c

#include <linux/bpf.h>
#include </home/ubuntu/test/libbpf-0.4.0/src/bpf_helpers.h>

SEC("xdp_drop")
int xdp_drop_prog(struct xdp_md *ctx)
{
 return XDP_DROP;
}

this module is not found by the compiler
therefore manually downloaded from
GitHub and provided the complete path
to compiler

this file is provided by the kernel-header
package, which defines all the supported
BPF helpers and xdp_actions like we've

used XDP_DROP action

Build and dump the BPF object

$ clang -O2 -g -Wall -target bpf -c xdp_drop.c -o xdp_drop.o

-O to define output file

Using llvm-objdump to view ELF format after the build
llvm-objdump is used to know
what a program does , if you don't
have the source code

$ llvm-objdump -h xdp_drop.o

-h to displays the
sections in the object

Output

FLow Diagram

Use llvm-objdump to view ELF format after the build

$ llvm-objdump -S -no-show-raw-insn xdp_drop.o

-S option displays the source
interleaved with the
disassembled object code

Output

$ ip link set dev lo xdpgeneric obj xdp_pass_kern.o sec xdp

Attaching the XDP program the device (lo) :

Listing the device via ip link show also shows the XDP info:

$ ip link show dev lo

Let's have a look at running BPF programs and activities on our device

The program that we've
created is attached here

The program that we've
created is attached here

Running BPF programs and activity on our interface device

This flow diagram is taken from another site, This diagram is partially
relevent with our program, but good to create a basic understanding

Now, some points that I found important

So we need high-performance programmable access to networking packets before
they enter the networking stack.
Some eBPF helpers are accessible only by GPL-licensed programs, so we need to add
the license at the end of program, like this

we're not loading XDP programs on the default interface. Instead, we use the eth1
interface for testing. if we use the default interface then we may lose internet access
because our XDP program is dropping the packets.
I tried to load the XDP program via xdp-loader but Ubuntu doesn't have this module
available.

I can also test this program on CentOS and Fedora, But currently, I don't have the .ova
image for both of them to create a VM on XEN orchestra, As ubuntu provides .ova images
openly but CentOS and Fedora Don't.

https://developers.redhat.com/blog/2018/10/22/introduction-to-linux-interfaces-for-virtual-networking/#veth

https://webthesis.biblio.polito.it/15948/1/tesi.pdf

Resources used:

https://blog.aquasec.com/libbpf-ebpf-programs

https://github.com/libbpf/libbpf

Basic definitions and concepts are covered in other pdf
that I created earlier as my learning resource

