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Abstract

The architectural shift in the implementations of Network Function Virtualization
(NFV) has necessitated improvements in the networking performance of commodity
servers in order to meet the requirements of new generation networks. To achieve
this, many fast packet processing frameworks have been proposed by academia and
industry, one of them being eXpress Data Path (XDP) incorporated in the Linux
kernel. XDP differentiates from other packet processing frameworks by leveraging
the in-kernel facilities and running in device driver context. In this study, the XDP
technology is evaluated to address the question of supporting performance needs of
container-based virtual network functions in cloud architectures. Thus, a prototype
consisting of a data plane powered by XDP programs and a container layer emulating
the virtual network function is implemented, and used as a test-bed for throughput
and CPU utilization measurements. The prototype has been tested to investigate
the scalability with varying traffic loads as well as to reveal potential limitations of
XDP in such a deployment. The results have shown that an XDP-based solution for
accelerating the data path for virtual network functions provides sufficient throughput
and scalability in a system with multi-core processor. Furthermore, the prototype
has proven that the XDP-based solution has higher throughput performance than the
implementation with Linux networking stack. On the other hand, the prototype has
been observed to have performance limitations which are analysed in detail. Finally,
future directions for further improvements are proposed.

Keywords Virtual network functions, Packet processing, Linux kernel, eXpress Data
Path
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1 Introduction

In recent years, the advancements in telecommunications by the emergence of 5G
technologies have provided several nascent use cases such as factory automation,
connected drones, autonomous vehicles and smart grids [1]. These use cases promise
new opportunities for many industry verticals; however, these new use cases demand
ambitious capabilities from the underlying network infrastructure such as, fast
and reliable connection, very high throughput, programmability and scalability
of the networks cost-efficiently. In order to meet those requirements, the novel
telecommunication networks have been transforming towards a service-oriented and
modularized architecture [2] by adopting network softwarization [3].

Network softwarization enables the separation of monolithic networking hardware
and software bundles by leveraging Software Defined Networking (SDN) and Network
Function Virtualization (NFV) concepts. SDN aims to decouple network controlling
functions from network forwarding functions which results in the desired flexibility
and programmability for service-based networks [4]. Likewise, NF'V proposes complete
virtualization of network functions (NFs) and gives capability to run on commodity
servers (Commercial Off-The-Shelf (COTS)) [5]. NFV virtualizes network functions
such as routing, switching, load balancing, firewalls into software programs which can
be deployed on a virtual machine (VM) or a container residing on top of a hypervisor
or a bare-metal server respectively. This gives flexibility to deploy customized NFs
based on the needs of the network, and ability to scale in/out depending on the
traffic demand.

In order to realize the true potential of the network softwarization, the telecom
industry has been in an architectural shift towards cloud computing together with
edge computing. Cloud computing refers to the way of providing computing services
through the Internet where the service resources, such as servers, storage, databases
and networking, reside in the data centers [6]. In addition to that, edge computing
decentralizes the cloud architecture in order to provide data processing facilities
closer to the source of the data. By following the trend in cloud computing, one
step further in the evolvement of NF'V has been the adoption of the micro-services
architecture in recent releases [7]. This architecture is practised by decomposing the
NFs into smaller functional elements and orchestrating these decomposed functions
based on service needs [3]. Such an approach provides a modular architecture which
eliminates redundant network processing, enables customized service chains and
results in cost-efficiency [3].

One of the main components of the micro-services architecture is the emerging
container technology. Containers are lightweight and isolated instances of programs
running on top of the mechanisms abstracted from underlying hardware components
and operating system (OS). Unlike virtual machines that reproduce a complete
operating system on top of the host server [8], containers leverage the capabilities
of the core of host operating system, namely ‘kernel’; and skip hardware emulation



overhead [9]. Thus, containers promise higher-resource efficiency, faster boot time
and more flexible life-cycle than virtual machines for implementation of virtual
network functions (VNFs) [8]. However, the design of kernel networking stack of
commodity servers in general is not performance-oriented as in a function-specific
hardware. Consequently, in high-speed traffic conditions, the networking stack in
commodity server OSes does not provide sufficient performance for the network
functions deployed in containers [10].

In order to overcome the incompetence of the networking stack of commodity servers
in the context of providing high-performance, several packet processing frameworks
have been under development and some of them are widely used to implement in VNFs.
Examples are DPDK (Data Plane Development Kit), PF__RING ZC (Zero Copy)
and netmap [11]. Whereas all of these frameworks aim to increase the performance
of packet processing, they vary in terms of overall performance, convenience of
implementation, hardware compatibility and software requirements [12] due to the
divergence in their methods. For instance, the highest performing and widest used
method DPDK [13] utilizes the kernel-bypass technique which eliminates the kernel
networking stack and transfers packet data directly to user space applications for
processing. Although this technique boosts the performance significantly, it requires
the network stack to be re-implemented from scratch in the OS user space which
brings additional cost to developers [14]. Moreover, its implementation demands
at least one CPU to be fully dedicated to packet processing as well as huge page
memory to be pre-allocated [15, 16, 9]. Such problems necessitate a more efficient
and less costly method for development of high-performance network functions.

One promising solution for tackling this issue would be to incorporate eXpress
Data Path (XDP) in the architecture of network functions. XDP is a recently
developed packet processing framework running in the Linux kernel. Contrary to
kernel-bypassing frameworks, XDP programs start packet processing instantly in the
network device driver context. Thus, XDP introduce no overhead of moving packet
data from network device driver queues to user-space applications.

XDP executes in kernel-space by utilizing eBPF (extended Berkley Packet Filter)
technology. eBPF is a built-in Linux kernel tool which has been widely used for
network observability, packet filtering and packet capturing [17]. This technology
enables XDP programs to run as process virtual machines attached to network device
drivers. Thus, XDP programs immediately catch the arriving packets from the
receiving queues in the network device driver, right before the packets are transferred
to the kernel network stack. As a consequence, the packet-processing performance is
improved by the elimination of some costly kernel network stack operations, such as
buffer allocation per packet.

This promising feature has led XDP to be used in various contexts both in industry
and academia. For instance, one Open Source project called Cilium utilizes XDP for
providing security and load balancing to networking between container applications
[18], while Cloudflare uses XDP for mitigating DDoS (Distributed Denial of Service)
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attacks [19]. The studies [15, 20, 21, 22, 23] evaluate and implement XDP in different
cases and report its potential for enhancing packet processing performance. However,
this technology is in early stages of development and needs more attention to be
further improved. Moreover, there is little research addressing the usability of XDP
for implementing virtual network functions, especially using containers and virtual
network interfaces.

Therefore, this thesis aims to evaluate the feasibility of using XDP for accelerating
the packet-processing performance for container-based virtual network functions,
exclusively in the scale of the edge cloud network. To accomplish this task, the
thesis implements a prototype consisting of an XDP-based routing and forwarding
plane, and on top of it, a container layer which emulates the container-based network
functions. The goal of the prototype is to provide a stable environment to observe the
overall system performance as well as the packet-processing capabilities when XDP
programs are attached to both physical and virtual interfaces. Thus, the prototype
implements solely the routing and packet-forwarding functionalities. In order to
provide simplicity, network functions, such as load balancing or deep packet inspection,
are not implemented in this thesis. Later, the performance of the prototype has been
tested with the traffic produced by a packet generator in a test-bed consisting of cloud-
grade servers. The performance measurements focus on throughput performance,
packet-loss occurrence, and CPU usage in order to evaluate the performance impact
of XDP-based packet-processing as well as the practicality of such implementation.
The latency measurements are not within the scope of this study.

The rest of the thesis is divided into five chapters. Chapter 2 gives background
information on the utilized technologies in order to provide a solid understanding
on the overall context of the study. Following chapter reviews the literature which
studied XDP and available technologies which utilized XDP. Such review of available
works aims to highlight different use-cases which supported the development of the
prototype as well as to provide a foundation for performance comparison of the
prototype. Chapter 4 explains the architecture and implementation of the prototype.
In addition, the method and tools of measurement are described in detail. Chapter
5 presents a thorough analysis and discussion on the performance of XDP based
on the results obtained from the measurements performed on the prototype. Final
chapter concludes the thesis by summarizing the study and its output, and offers
directions for future research.
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2 Background

This chapter aims to provide the foundational information to perceive the origin
of this study, as well as to comprehend the fundamental constituents of the packet
processing in commodity servers. Firstly, the timeline of network function virtualiza-
tion is summarized including the technological trends affecting its evolution. The
contributing technologies are defined briefly in order to depict the current status and
future directions of NFV.

Later, the fundamentals of Linux networking from the packet reception perspective
are explained extensively. This knowledge base of Linux networking is distinctly
required to grasp the difference of the studied technology from other available solutions.
Thereupon, a brief introduction to software-based high-performance packet processing
frameworks is presented including base-level information on kernel-bypass methods as
well. Finally, the studied technology, XDP, and its underlying mechanism, eBPF, are
explained thoroughly. Starting from its architecture, the fundamental components
and functions of the technology are reported to pave the way for the implementation
and further evaluation.

2.1 Evolution towards cloud-native network functions

In telecommunications, the networking infrastructure has been deployed using
function-specific hardware until recent years. Although these dedicated equipments
provide great performance, such an infrastructure composed of monolith hardware
lacks the agility to embrace the ever-changing demands and increasing competi-
tiveness of the market. Consequent to the inert nature of conventional networking
hardware, advancements in virtualization technologies, which abstracts the functions
from the hardware, has resulted in a paradigm shift in telecom industry towards
Network Function Virtualization (NFV) and Software Defined Networking (SDN).
Principally, ETSI ISG NFV is the organization that guides the NFV development
and defines the specifications for implementation since 2012 [7]. Until today NFV
has been adopted by many vendors and service providers in a way to sustain the
legacy infrastructure and deploy the softwarized versions of the network functions in
virtual machines running on commodity servers. However, this approach does not
provide the performance boost from the customized networking chips used in the
monolith networking hardware.

Therefore, as of ETSI ISG NFV specification Release 4 [7], the specifications suggest
the adaptation of cloud-native architecture in telecom infrastructures. In addition to
that, through the tight collaboration between ETSI and 3GPP, the novel 5G core
architecture is designed to utilize micro-services approach for implementation of new
service-based architecture since 3GPP Release 15.

In the micro-services architecture, services are broken into smaller services running
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inside lightweight processes and orchestrated through a controlling mechanism which
populates the services with the required amount of resources. This architecture
obtains its power mainly from the container technology.

2.2 Containers

Containers run as isolated sets of processes on top of the kernel of the host operating
system. In Linux operating system, containers are enabled fundamentally by names-
paces and cgroups technologies [24]. Namespaces is a feature of Linux kernel that
isolates processes; thus, the processes running in different namespaces cannot access
each other. Cgroups is another feature that allows to define resource limits on a group
of processes. For instance, such resource limits can be enforced on CPU and memory
usage of the regarding processes in that cgroup. Unlike the virtual machines which
require to setup the complete operating system and abstracted hardware components,
containers are able to run as isolated processes securely on an abstraction layer by
utilizing the namespaces and cgroups features.

In general, containers are built on individual network namespaces and communicate
with host and other containers through the virtual network interfaces attached [25].
‘veth’ interfaces are the most commonly used virtual interfaces in containers. veth
interfaces come in pairs that one is attached to the container and the other peer is
attached to the host. These peers work like a virtual Ethernet cable where a packet
arriving at an interface ends up in the other interface.

namespace 1

|
I
I
I
I

I veth peer 1 I
_/

—
( Network
[

[

I

(
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-l — — — ~

)

I

I

Network |
namespace 2

Figure 1: Representation of veth pairs attached to different network namespaces
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Figure 2: An example of container networking with veth pairs

2.3 Packet processing in Linux kernel networking stack

In this section, Linux kernel networking fundamentals are studied comprehensively
in order to depict a clear image of packet processing mechanism in Linux networking
stack.

The whole packet processing mechanism is a harmonious cooperation of Linux kernel
network stack internals, such as data structures and system calls, as well as the
underlying hardware constituents such as the processor, network card and memory.
Packet processing is composed of a chain of events traversing through layers of the
networking stack, from physical transmission layer to user-space or vice versa.

From a high-level perspective, the fundamental elements of the path of a packet are
the Central Processing Unit (CPU) handling significant amount of the processing, the
Network interface card (NIC) providing the connection point with outside of the host,
memory buffers and data structures that keep the packet and packet information,
internal kernel mechanisms than control the flow of process handling.

2.3.1 Impact of hardware components in kernel networking

CPU. CPU is the main processing unit that executes directives to produce output
from given input. These directives are machine-level instructions provided by the
programs in execution. A CPU has an internal clock which is made of quartz crystals
oscillating in a very high frequency. The oscillating frequency determines the ticking
of the CPU clock, and CPU executes one cycle in each tick of the clock. Within this
cycle, a CPU executes an operation such as fetch or decode instructions, read from
memory. Thus, the cycles per second affects the number of instructions executed per
unit time, and consequently the speed of the CPU. [26].
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Through the evolution of processors, the main goal had been increasing the clock
frequency to accelerate the processors until the increasing clock speed has become
costly due to limitations, such as very high temperature of the hardware at higher
frequencies [5]. Therefore, the processor producers have shifted the design focus
towards bundling multiple computational engines [27], referred as cores, on a processor
in order to improve overall computing performance, instead of enhancing the speed
of a single processor computational unit [28]. Such processors are called multi-
core processors, and they enable the execution of multiple and distinct threads of
instructions in parallel. For instance, in the Intel Core processor family, which is
designed for small scale computing units, such as personal laptops, number of physical
CPU cores vary from 2 to 8 in i7 series, and reach up to 10 physical CPU cores in i9
series [29]. Additionally, in multi-core processors targeting data center computing
units, such as Intel Xeon processor family, the number of physical cores can reach up
to 56 cores [30].

Additionally, as CPU catches the instructions and input data from the associated
memory and delivers the output to memory as well, the efficiency of the communi-
cation with memory is highly significant. Thus, modern processors have their own
local memory areas called cache in addition to the main memory.

Cache memory areas are located close to the CPU logical units in order to eliminate
the cost of transferring data to and from a farther location. In modern architectures,
CPU cores generally have three level of caches with different proximity and sizes.
CPU searches for the instructions first in layer 1 cache which is the closest but smallest
sized cache, then layer 2 and layer 3 caches that are relatively farther and bigger.
Layer 3 cache is shared among multiple CPU cores in a multi-core system, while L1
and L2 caches are exclusive to the corresponding CPU core. Finally, CPU searches
for the required input in the main memory if it can not acquire the information in
any level of the caches.

Core 1 Core 3 | oo Core 11
Lid | L Lid | Ll Lid | L
| L2cache ||  L2cache | | L2cache |
L3 cache
L2cache || L2 cache L2 cache
Lid | Li Lid | Li Lid | Li
Core 2 Core 4 | v Core 12

Figure 3: CPU cache levels reference representation [31]

NIC. NIC, called as network adapter as well, is a hardware unit connecting the
host to a network by receiving and transmitting data packet signals. The physical
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communication between the NIC and the host system is handled over the system
bus where NIC card is attached. NIC devices consist of physical ports for data
transmission and reception, buffers where the data is stored before transmission to
host system, a controller unit and a direct memory access controller which handles
transmission of packets to designated memory accesible to the CPU core.

NIC devices are handled by the host kernel system through network device drivers.
The network device drivers are responsible from initialization of the network de-
vice, handling the communication between host and NIC device through interrupts,
allocation of memory area to locate the network packets [32].

2.3.2 Fundamental data structures in Linux networking

struct sk__buff. This is the data structure that stores all required information to
manage the packet under process. As packet traverses the network layers, its data is
kept in the same buffer allocated in a dedicated memory cache [33]. The sk_ buff
data structure contains the pointers to specific information fields regarding to this
packet in the buffer. Some of those information fields are protocol headers, location
of payload, destination, length of data structure, head and tail of data structure, and
timestamp.

| sk_buff_head sk_buff
next sk_buff
prev
list
L1
\::.p . ner_device

h
nh
mac h

st Packet data storage

= MAC header
TP header

R UDP header
UDP data

data
Lail
end

datarefp:1 |

Figure 4: sk_buff structure representation [34]

The ‘dev’ field points to a net_ device data structure and its utilization is subject
to change depending on the state of packet. Meaning that, the dev field points to
ingress interface if the packet is received, and it points to egress interface if the packet
is in transmission [33].

struct net__device. This data structure is utilized to represent each of the network
devices registered in Linux kernel. All the hardware and software information
regarding to the network device is defined in this data structure since network drivers
do not have device files under /dev directory [32]. The fields of the structure hold
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information in many categories, such as configuration, statistics, device status, and
traffic management [33].

2.3.3 Packet reception in Linux kernel

Packet processing is handled through the interaction between the CPU and NIC
device. NIC adapter receives the packets through wire or radio interface, and starts
transmitting them into the designated memory area in the kernel via direct memory
access (DMA). DMA is a feature that enables NIC devices to transfer the packets in
NIC receive buffers directly into the device driver buffers located in RAM or CPU
cache. These packet buffers are allocated by network device driver for both reception
and transmission queues in a ring buffer data structure. Then, their location in the
memory is informed to the NIC device by the driver. Device drivers have to initialize
these settings before the packet handling.

After the packets are transferred to the RX ring buffers through DMA, the NIC raises
a hardware interrupt request (IRQ) to notify the CPU that there are new frames
ready to be processed. This hardware interrupt triggers the network driver to start
its processing on the packets. A hardware interrupt causes immediate interruption
on any running process on CPU, and CPU cannot process any other interrupts until
the hardware interrupt handling finishes [34]. Thus, hardware interrupts can easily
consume all the CPU resources if they occur more frequently than they are processed.
For this reason, modern systems handle the network packet arrival interrupts through
an interrupt management technique called New API (NAPI). When NAPI is invoked,
the processor switches to polling mode from interrupt handling, and switches back
to default mode when the tasks in NAPI queues are finished.

In case of packet reception, the network device driver triggered by the hardware
interrupt invokes the NAPI mode. To enable NAPI, network driver disables the
hardware interrupts until NAPI dequeues the awaiting packets. NAPI polling and
packet dequeuing are performed through software interrupt mechanism (softirgs).
Softirgs differentiate from hardware interrupts since they can be scheduled for later
execution and do not require immediate action like hardware interrupts [35].

The softirgs transfer the packets to kernel networking stack by allocating socket buffers
and sk buff data structures. After socket buffer allocation, the Linux networking
stack passes the sk _buff data structure through corresponding protocol layers for
further processing of the packet.

2.4 High performance packet processing

Linux kernel network stack consists of many tools providing granular networking
capabilities, such as the data structures to represent network packets and network
devices, various systemcall functions to perform packet modifications, a wide selec-
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tion of network protocol implementations, firewall functionality, and routing tables.
However, Linux network stack performance decreases dramatically as the network
line rate increases due to high overhead of the processing of each packet through the
levels of the stack. Consequently, the gap between the packet rate on the line and
the processing time allocated for each packet have necessitated the implementation
of new high-performance packet processing frameworks, such as netmap and DPDK.

Netmap is a device and operating system independent packet 1/O acceleration
solution that provides user-space applications with fast access to network packets
[36]. Tt is loaded into kernel as a module and requires modification on network drivers
to be able to function in netmap mode. Many widely used drivers have patches to
support netmap mode [37]. Netmap acquires its efficiency by several techniques;
such as pre-allocating packet buffers and removing runtime memory allocation cost,
providing exchange of packets between NIC and user-space with ring buffers in shared
memory, and reducing the need for system calls per packet.

By architecture, netmap has three fundamental data structures, which are netmap_if,
netmap_ring and packet_buf,that enable direct communication between NIC and
user-space program during execution in netmap mode. These data structures are
located in a non-swappable shared memory area that is accessible by all processes.
The netmap_if data structure keeps information related to network interface, while
the netmap_ring keeps references to packet_buf structures in a circular queue
model. The packet_buf data structures are pre-allocated in the shared memory and
each keeps a single network frame. Consequently, netmap eliminates the overhead
of system calls for memory allocation and packet copy to user-space. Furthermore,
the usage of system calls in netmap is kept limited to device opening operation and
updating the NIC about the availability of ring buffers [13].

4 Application )
netmap API
\—Il_ netmap ringle'il_/
( :!—!:__—\

l host stack 1

\ n Huull J
NIC rings

4 |—|—_ L F N\
Network adapter

(& J

Figure 5: netmap representation [37]

Another widely used framework is the Data Plane Development Kit (DPDK) which
consists of libraries for data plane applications [38]. DPDK is a kernel-bypass
technique that carries the packet processing tasks to user-space programs by giving
user-space the full control over the network devices. Therefore, it completely isolates
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the kernel network stack from the packet processing operations, which requires
reimplementation of a seperate networking stack in the user-space. Additionally,
DPDK eliminates the interrupt processing overhead through constantly polling the
network devices instead. However, in such architecture, all the required resources
have to be allocated and dedicated before the data plane applications starts execution
[38]. For instance, a CPU core dedicated for DPDK applications is always 100%
utilized due to constant polling to the network devices. As this accelerates the packet
processing performance dramatically, it may lead to wasted CPU cycles and high
power consumption since the processor will continue polling even there is no incoming
packets.

2.5 In-kernel fast packet processing:
eXpress Data Path (XDP)

XDP is an in-kernel packet processing technique which has been merged to Linux
kernel in version 4.8 [39] and has been under active development since 2016.

XDP initially operates at Layer 2 (Ethernet) and Layer 3 (IP), and targeted to
increase the performance of processing the stateless protocol packets [16]. Thus, as
the time of writing XDP does not have a Layer 4 (TCP) implementation; but, it is
capable of pushing the packets to the upper layers of the Linux kernel network stack
for further processing after the L2/1.3 processing is completed.

Fundamentally, XDP programs are capable of processing the received packets at the
earliest stage when they arrive to kernel, which is immediately after the reception
from NIC device, and before the sk_buff data structure allocation in the kernel
network stack.

By design, XDP works in cooperation with the existing kernel networking infrastruc-
ture unlike the kernel-bypass techniques which isolate the kernel from their operations.
Thus, it provides high-performance processing within the kernel-space without the
need of additional user-space implementations or kernel modules. Apart from that,
XDP programs do not require dedicated CPU units and pre-allocated memory pages
solely for packet processing. This gives an advantage in efficient resource utilization
and power consumption.

Another important point is that, the XDP programs are prevented to crash the kernel
and are programmable on the fly without service discontinuation [16]. Furthermore,
XDP programs can create and access to their custom data structures, which provides
metadata-sharing with other XDP programs, kernel-space and user-space. Addition-
ally, XDP programs are able to utilize some kernel functionalities, such as routing
table look-ups, through helper functions provided in kernel libraries.

In the following subsections, architecture of XDP and the technologies that make up
this architecture are explained in detail. Later, XDP operation modes, return codes
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and bulk processing feature are briefly described.

2.5.1 XDP architecture

XDP programs are essentially extended Berkley Packet Filter (eBPF) programs
attached to a special type of hook on the network device driver. In order to understand
the overall architecture of XDP, it is important to understand eBPF technology as
well. Thus, the following part presents an introduction to the eBPF technology; then,
we explain the XDP architecture and the way it utilizes the eBPF facilities.
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Figure 6: Overview of XDP and XDP actions [16]

eBPF (Extended Berkley Packet Filter) BPF (Berkley Packet Filter), and
the ancestor of the eBPF, is a tool inside the Linux kernel, which emerged in 1992 and
has been initially used for network packet filtering applications such as well-known
tecpdump. BPF has differentiated from other packet filter frameworks due to its
ability to run directly in kernel as a process virtual machine and without the need of
copying the packets to user-space [40]. Specifically, BPF virtual machines decode and
execute given instructions in a separate execution environment, and use the operands
located in CPU registers. These instructions are compiled from high-level languages
to a mid-level source code, which is called bytecode, in order to be processed through
an interpreter to execute as machine code in runtime. Furthermore, BPF programs
are ensured to run safely and exit immediately when the execution is completed.

As keeping the fundamental structure same, eBPF is introduced as an extended,
accelerated and optimized version of BPF in 2014. This new version, called eBPF,
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provides ten 64-bits registers in BPF' virtual machines while ancestor BPF provided
only two 32-bits registers [40]. As a result, the extended version gives opportunity
for more complex in-kernel programs and achieves better compatibility with modern
hardware. Additionally, eBPF supports stateful programs by utilizing its own map
structures.

Further details regarding to the components and functionality of eBPF is explained
within the XDP architecture subject in the following part.

XDP architecture The overall architecture of XDP is composed of the eBPF
virtual machine (bytecode), the BPF verifier, XDP driver hook, and BPF maps [16].

Basically, an XDP program is written in restricted C code and compiled into bytecode
through the LLVM compiler in the kernel. After compilation, the compiled bytecode
has to be verified as safely-executable within the kernel. This verification process
is performed by the BPF verifier utility which has to make sure that the program
has no loops, does not exceed the program size limits and does not call unreachable
functions [16]. Additionally, the verifier has to check if the data exchange with the
maps are configured properly and the program does not try to reach out of the
valid memory boundaries. It should be noted that this examination ensures only
the program safety, and it does not consider if the program performs the expected
functionality.

Once the program is verified, the bytecode is compiled into machine code by JIT
(Just-in-time) compiler [40]. JIT compiler compiles the bytecode into machine code
on-the-fly, which results in performance increase in the execution speed [41].

Further to that, XDP programs are executed based on kernel events like all the BPF
programs. In order to receive the designated kernel event, the programs need to be
attached to an appropriate execution point, also known as hook point. An eBPF
program starts its execution when the hook point is triggered by the occurrence of
the registered event. In case of the XDP programs, this execution point is located in
the network device driver, and it is triggered by the reception of a packet [42].

At the reception of a packet from the network hardware, the XDP driver hook in fact
receives a context object which encloses the pointers addressing to the raw packet
and the metadata regarding the packet. That XDP context object is defined in bpf .h
library as xdp_md struct with additional data fields pointing to receive and transmit
interfaces.

1 struct xdp_md {

2 __u32 data;

3 __u32 data_end;
4 __u32 data_meta;
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5 /* Below access go through struct zdp_rzq_info */
6 __u32 ingress_ifindex; /* rzq->dev->ifindexr */

7 __u32 rx_queue_index; /* rzg->queue_indexr */

8 __u32 egress_ifindex; /* tzq->dev->tifindex */
o}

When XDP receives this context object, the received packet still resides in the
receiving queue buffer of the driver. Thus, XDP program is able to start processing
packets before the Linux networking stack performs socket buffer allocation.

Another BPF component utilized by XDP programs is the BPF maps which are
persistent key/value data storages allowing programs to register and read data inside
kernel. Furthermore, these maps can be read and written from user-space as well.
By this way, BPF maps enable the bidirectional communications between kernel and
user-space as well as the data transfer between different eBPF programs running
in the kernel [16]. Specifically, they can be used to manage forwarding actions, to
collect program metrics, and exchange information with the user-space.

The mechanism that provides access to BPF maps are the BPF helper functions
defined in kernel. Not limited to that, helper functions enable usage of some of the
existing Linux kernel facilities from within the XDP programs instead of reimple-
menting these functionalities or evoking system calls. XDP programs can leverage
many useful functionalities through the helpers, such as accessing the routing tables,
calculating checksum values, modifying map values, and triggering concatenated
execution of eBPF programs [43].

2.5.2 XDP driver modes

As mentioned in the XDP Architecture subsection, an XDP program runs in the
network device driver context and its functionality depends on the device driver. In
accordance with the support of the network device driver, XDP can operate in three
different modes: native, generic and offload.

Native XDP. This is the essential XDP operation mode in which the XDP program
is directly attached to the device driver. Consequently, it provides the aforementioned
benefit of executing the program before the kernel networking stack handles the
packet. However, the number of network device drivers that support this mode is
limited. Some of the supporting network drivers are Intel i40e and ixgbe, Netronome
nfp, Mellanox mlx4, mlx5, and virtual interface veth [39].

Generic XDP. In case of the network driver does not support the native mode,
the XDP program can be attached inside the kernel. This mode is called generic
XDP. Unfortunately, generic XDP mode has performance penalties compared to
native mode due to the fact that the packet is handled within kernel; thus, it brings
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the additional overhead of kernel stack processes, such as sk buff allocation. For
this reason, this mode is advised to be used only for testing purposes, and not for
production environments.

XDP Offload. The third operation mode offloads the XDP program onto the NIC
device. Currently, the support for this feature is limited to smartNICs.

2.5.3 XDP actions

An XDP program starts with reception of a packet and continues with performing
its programmed tasks on the packet, such as parsing, encapsulating, and rewriting.
Based on this processing, the program has to return a final verdict to the device driver
so that it can take an action on the packet. There are five predefined actions in Linux
kernel that XDP programs can return to drivers: XDP__ABORTED, XDP_DROP,
XDP__PASS, XDP_ TX, and XDP_REDIRECT [44].

XDP__ABORTED. This action drops the packet and raises an exception through
a tracepoint. Thus, it can be utilized to monitor misbehavior of the program.

XDP_ DROP. This return code drops the packet immediately at the driver level.
It is useful especially for DDoS mitigation scenarios.

XDP_ PASS. This action passes the packet to the kernel networking stack so that
the kernel allocates socket buffer and continues with the processing.

XDP_ TX. A program returning this action code directs the packet back to the
ingress interface the packet was received. For instance, this action is useful to
implement a load balancer which sends the packets back to the switch after rewriting
them.

XDP__REDIRECT. This action provides the ability to redirect the packets to
another physical or virtual network device driver. Additionally, it can redirect the
packets to a remote CPU for further processing: in consequence, the CPUs serving
to RX queues can continue processing the reception tasks while remote CPUs can
continue performing the costly packet processing tasks. This mechanism allows to
reduce the load on CPU cores that are serving to receiving queues [44].

2.5.4 XDP bulking in XDP__ REDIRECT action

XDP Redirect action handles bulk processing of XDP frames in cooperation with
the NAPI mechanism and the BPF device maps. As described in [45], the device
drivers with XDP support accommodate an XDP RX handler which has access to
BPF device map given to the program. This map provides the connection with the
net_device data structure which keeps the XDP bulk queue information.
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In the packet reception, NAPI mechanism calls the poll function and triggers the XDP
RX handler of the device driver. The RX handler executes the xdp_do_redirect
function upon the REDIRECT verdict from the program, which processes the
frames within the bulk queue. At the end of the NAPI poll, the device driver calls
xdp_do_flush_map action to flush the device map and get the state ready for next
NAPI cycle.

This chain of events is defined within the device driver header files such as [46] for
i40e device driver. Apart from that, the default bulk queue size is defined as 16
frames in the xdp.h kernel header file [47].
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3 Related work

Usability of XDP is not only limited to single domain due to being directly integrated
to the kernel. It proposes potential improvements in various fields serving to different
purposes, from high performance packet processing to network security. In this
chapter, both academic studies and industrial cases that implement and investigate
XDP are studied in order to provide a better understanding of the abilities of this
relatively new technology.

As explained in previous chapter, XDP is actually an eBPF program running on the
network device driver context of the kernel. Consequently, primary studies on XDP
have focused on the analysis of its impact on packet processing performance. The
paper [16], written by principal developers of XDP, extensively covers the technology
from different aspects including packet processing performance measurements. It first
explains the overall architecture by articulating the details of eBPF, analyzes the
performance from different aspects and discusses the current limitations. Additionally,
the paper supports the claim of functionality with real life use-cases, such as software
routing, inline DOS mitigation and load balancing.

In the study [16], the performance evaluation conducted as a comparison of differ-
ent packet processing frameworks: Linux kernel networking stack, XDP, and the
kernel-bypass method DPDK. The tests pay attention to raw packet processing
performance with minimum-sized (64 bytes) packets since the number of packets
processed per second is a more relevant metric than the impact of the size of the
packets. Furthermore, authors selected the metrics of comparison as packet drop
and packet forwarding performance as well as CPU usage. Packet drop tests on
one CPU core showed that XDP reached 24 Mpps which is 45% less than DPDK’s
performance. Nevertheless, it performed almost 6 times better than Linux networking
stack which used iptables module to drop packets and reached 4.8 Mpps at maximum.
Packet forwarding tests show more interesting results due to two different modes of
forwarding with XDP: forwarding to same NIC and different NIC. On forwarding to
different NIC case, DPDK performed slightly better than XDP, with 50 Mpps and
40 Mpps throughput respectively with five cores. In CPU usage tests, DPDK used
100% of CPU as expected due the nature of its design that dedicates a full core for
processing. Linux networking stack hit the full CPU usage as early as 5 Mpps load
while XDP was able to process up to 25 Mpps until reaching 100% CPU capacity.

Another highlight of the study is the decrease of throughput performance in accordance
with the XDP functionality under test. Table 1 represents this occurence as the
comparison of reported results from different XDP applications tested on a single
core. It is clearly seen that the throughput decreases with the added functionality,
such as packet forwarding. For instance, packet drop case is the highest performing
case since it performs the minimum functionality by simply dropping the received
packets. On the other hand, in the routing application case, the performance drops
to 3.5 Mpps due to additional costs introduced by the kernel table look-up and the
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packet redirection from one physical interface to the other one.

Functionality under test Max. packet rate
Packet Drop 24 Mpps
To diff. NIC | 9 Mpps
To same NIC | 18 Mpps
Single table | 5,2 Mpps
Full table 3,5 Mpps

Packet forwarding

Routing

Table 1: XDP benchmark results with single core for packet drop, packet forwarding
and router (with kernel routing table look-up) functionalities [16]

Eventually, these measurements have shown that XDP definitely performs more
efficiently than Linux network stack in reported cases; however, it still needs more
development in order to minimize the gap to DPDK.

Another study [20] presents an evaluation on feasibility of XDP for offloading some of
the packet processing functions. For this purpose, the study examines three different
offloading options supported by XDP, which are XDP device driver offloading, kernel-
bypass with AF__XDP socket, and offloading to programmable NICs. Packet drop
tests in XDP driver offload case have supported the claim of achieving 14.88 Mpps on
10 Gbit/s line rate of previous studies. However, adding complexity to offloaded tasks
by including checksum calculations decreased the packet drop rate. Nevertheless,
driver offload outperformed kernel-bypass with almost double packet rate until their
performance converged at 20 checksums. Additionally, programmable NIC got
overloaded by checksum calculations very quickly compared to driver offload and
kernel-bypass due to its lower processing capacity than host CPU. Another finding in
the study is the decrease of throughput when offloading is actualized on VM device
driver instead of host driver. This effect results from the overhead of forwarding
packets from host to VM driver. On the other hand, if VM driver tasks are offloaded
to host driver, it may cause breaking the isolation between VMs sharing the same
host. In short, the study showed that offloading by using XDP promises acceleration
in packet processing performance in some cases. However, the offloaded tasks need
to be kept small and meticulously implemented for each use-case.

As studies have been proving high performance capabilities of XDP, there have
been research activities that aim to investigate its usability in design of virtual
network functions in order to defeat performance penalties resulting from commodity
servers. In this direction, the study [22] extensively evaluates the limitations of
eBPF and XDP as well as their advantages in context of creating network functions.
Additionally, possible workarounds in order to overcome those challenges are proposed
and validated on test environment. As stated by the paper, the main drawback of
XDP is the limited number of helper functions compared to other network hook
points in Linux kernel. For instance, in the time of writing, XDP lacks the clone
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helper function that allows a packet to be forwarded to multiple ports at the same
time, which is a feature needed by several network functions, such as bridge and
router [22]. Nevertheless, this functionality is currently under active discussion of
kernel developers and planned to be supported in future releases [48]. Aside from
the challenges, the study validated the improvement of throughput both in native
XDP and generic XDP cases, with 65% and 25% performance increase respectively.
It is observed that the consumption of CPU has decreased as well with native XDP.

Another study published quite recently [15] has proposed a hybrid architecture for
high-performance VNFs by decoupling packet-processing operations into fast path
and slow path through leveraging XDP and kernel-bypass respectively. This approach
resembles to OpenFlow since a packet takes the fast path and is processed in an eBPF
program if it matches a defined rule, similar to OpenFlow switch operation. Otherwise,
it is forwarded to user-space for further processing via slow path, like forwarding to
OpenFlow controller. However, these two approaches differentiate in terms of scale.
The advocated VNF architecture is to be implemented on one host machine, while
OpenFlow is implemented through the whole network. Additionally, utilization of
XDP proposes shorter communication delay between the forwarder and controller,
and provides more flexibility in programming compared to OpenFlow mechanism.
The study validates the impact of the hybrid architecture by implementing and testing
on network functions, such as load balancer, firewall, and deep packet inspection.
The evaluation is performed both on single VNF setup and multiple service-chained
VNF setup. The results showed that the proposed architecture with XDP scales
efficiently with the number of CPUs; in addition, it is observed that the throughput
and latency performance increased. Lead by the promising results, the study suggests
more research for implementing such architecture to container-based VNFs as well.

Complementary to reported initiatives of adopting XDP in VNF design, native
XDP support for veth devices has been recently added to kernel (since version
4.19) as described in conference paper [48]. Inclusion of native XDP support for
virtual interfaces paves the way for accelerated cloud-native network functions as
well as service chaining through XDP. Prior to this inclusion, virtual interfaces only
supported generic XDP programs which results in the sk\_buff allocation which
eliminates the fundamental advantage of native XDP. In order to overcome this effect,
the native XDP implementation for veth devices incorporates XDP packet buffers
and NAPI handler in the veth device driver. Such approach enables redirection
of packets between the XDP-loaded physical and veth interfaces without sk_buff
allocation; thus, boosts the overall packet processing performance.
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Figure 7: XDP performance on veth device with single core [49]

Finally, the developers of the solution validated the performance enhancement on
veth devices with native XDP compared to generic XDP. However, the XDP_TX
and XDP_REDIRECT performance on the veth device seems to decrease, shown in
Figure 7, when it is compared with the performance of physical interfaces reported
on previously discussed studies. For instance, redirect action hits approximately 6
Mpps on veth interface, while physical interfaces are noted as performing up to 9
Mpps in redirect action.

Apart from its usability for network functions, XDP has been adopted in a diverse set
of applications. One of the remarkable Open Source initiatives leveraging eBPF and
XDP is the Cilium project [50] which is a container networking solution providing
enhanced security and monitoring capabilities. Cilium benefits from XDP in order
to act very quickly on malicious and unforeseen traffic flows.

As a result of being at the earliest entry point of the host network, native XDP has
been under the spotlight for many other security solutions to mitigate the effects
of malicious traffic. Cloudflare used XDP for DDoS mitigation [19], while Suricata
utilized it to build a network threat detection engine [51].

On top of these, XDP has been utilized in various applications, such as a DNS traffic
manager [52] and packet steering engine [21]. Furthermore, Facebook has an open
source project, called Katran, which implements a high-performance Layer 4 load
balancing forwarding plane by leveraging eBPF and XDP [53].

A very distinctive XDP implementation [23] enables in-network control of industrial
machineries by synthesizing P4 programming with XDP offloading on SmartNICs.
Authors reported that using XDP provides flexibility in deployment and gives possi-
bility to developing custom protocols for a specific control problem.
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4 Implementation and Measurements

In this chapter, the implementation of the XDP forwarding plane prototype and its
integration to test environment is explained in detail. In tandem, the outlook of the
test environment and the practice of running the test cases are described.

4.1 Implementation of XDP Forwarding Plane

To begin with, the implementation aims to provide a prototype in order to evaluate
the usability of XDP technology in the novel container-based architecture of the
virtual network functions in edge-cloud scale. Thus, the fundamental attribute of the
implementation is the integration of XDP programs that perform forwarding actions
on virtual interfaces. The implementation is designed to enable an environment for
straightforwardly testing the fundamental considerations of network function perfor-
mance. Such considered matters are the ability to process high-throughput traffic
while utilizing processor power efficiently, usability of existing kernel functionalities
within system, programmability from user-space, and complexity.

4.1.1 Architecture of the prototype

Following the fundamental design considerations, the prototype is designed as a
separate data forwarding plane laying under the user-plane which is assumed to be
inhabiting containerized network functions, such as encapsulation, header modification
and deep packet inspection, and a container orchestrator.

The fundamental motivation to keep forwarding functions in a separate plane instead
of implementing this functionality within the containers, like for instance a container-
ized router, is to leverage the routing tables already available at host kernel. Using
the host kernel tables gives a unified reachability throughout the system’s interfaces
and the networks connected to those interfaces. Otherwise, a routing or forwarding
application within a container would require additional workarounds to access the
routing information of overall system due to the fact that the containers have access
to interfaces and routing information only within their own network namespace.

Considering the scope of this thesis, development of such user-plane level network
functions and incorporating a container orchestrator is not included in the imple-
mentation. Thus, the prototype implements solely the XDP forwarding plane and
tests its functionality.

As a requirement of the main purpose of the research, a container instance is placed
in the host in order to emulate a network. For the container implementation, a
Docker container is used due to its practicality and the convenience of the Docker API
command tool options. Furthermore, the container is attached to the host network
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through veth pairs. Veth pairs are virtual network interfaces that function like a
virtual cable between the attached network namespaces; thus, they are commonly
used in order to enable networking for containers. On top of that, veth pairs support
native XDP programs since kernel version 4.19.

As seen in the Figure 8, the network interfaces facing the host kernel namespace,
including both physical and virtual interface (veth0) constitute together the integrated
components of an XDP forwarding fabric. All the network interfaces are attached
with an XDP program relevant to their role in the system.

Docker
container User space

Kernel space

vethl XDP TX

F 3

XDP_TX
XDP_REDIRECT veth0 XDP XDP_REDIRECT

Router

Kernel FIB table

PHY interface | BPF | PHY interface
XDP Forwarder | 1 mnaps | XDP Forwarder

Packets sent
through
wire

PHY-1 packet PHY-2 packet
generator generator

A

Figure 8: Prototype overview

Physical interfaces of the host machine are attached with XDP Forwarder program
that forwards incoming packets to the virtual interface based on the source ethernet
address of the packets. The purpose of the source-based forwarding of these forwarder
programs is to redirect the incoming traffic to relevant network processing pipeline;
thus, they are not intended to make verdict on the packets. In order to forward packets
to relevant container, the XDP program performs a look-up to the assigned BPF
map; then, sends the packet to designated interface by executing XDP__REDIRECT
action. The BPF map, which can be accessed by both of the physical interfaces,
has been configured from the user-space by using bpftool to store the information
regarding to source MAC address and destination MAC address of the next hop.
bpftool is a command line facility to view and update BPF elements, such as BPF
programs and maps [54].
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# bpftool map update id <map_id> key <source_MAC_address> \
value <destination MAC address>

After the successful execution of forwarding from physical interface, the packets
are received in the veth peer inside the container (vethl). Here, further network
functions could be implemented on the packets. However, since network function
development is not within the scope of this work, the packets are directly sent back
to the ingress interface without any modification.

In order to send the packets back to the ingress interface, the XDP_TX action has
been utilized. The packets sent to TX queue of the inner veth (vethl) arrives to the
RX queue of the outer veth (veth0) interface due to the nature of veth pairs. The
packets arriving to RX queue of the vethO triggers the XDP hook attached on the
vethO. The XDP Router function attached on this veth operates the actual routing
functionality by performing a route look-up on the routing tables of the host kernel.
The kernel routing tables are entities that can be configured from user-space and
by routing daemons. In this prototype, the routes are statically configured, and the
dynamic routing protocols are not included.

After performing routing table look-up, the XDP Router program determines the
destination interface and transmits the packets to the TX queues of the designated
interface by executing the XDP__ REDIRECT action.

4.1.2 The XDP programs in the forwarding plane

In this section, an overview of the XDP programs implemented in this study is given
including structural details, such as the context objects, object structures and helper
functions. The XDP programs implemented in this study are derived from XDP
tutorial codes [55] provided by XDP developers.

An XDP program code can enclose more than one XDP program defined in separate
sections. Thus, the common parts of the code are presented first; later, the sections
of the code that separate forwarding, routing, and TX functions are explained.
Additionally, it should be noted that each network interface can be loaded with one
XDP program at a time, which is defined at program loading phase by giving the
section name as a parameter to BPF loader.

First of all, the XDP program code starts and ends with SPDX License Identifier that
remarks the source code under the GNU GPL 2.0 license. Then, the BPF libraries
that contain the required headers and functions are included.

1 #include <linuz/bpf.h>
2 #include <linuz/in.h>
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s #include <bpf/bpf_helpers.h>
4 #include <bpf/bpf_endian.h>

The BPF maps are defined under a separate maps section in the SEC(“maps”) format.
The SEC helper is a macro identified in bpf_helpers.h header file, and is used for
defining program sections, map objects and open-source license in distinct parts.
Thus, the ELF BPF loader can separately interpret each section [56].

1 struct bpf_map_def SEC("maps") redirect_params = {

2 .type = BPF_MAP_TYPE_HASH,
3 .key_size = ETH_ALEN,

4 .value_size = ETH_ALEN,

5 .max_entries = 1,

6 r;

Each executable XDP programs starts with SEC macro where the program name
is placed. Then, the program is defined as a function that takes the XDP context
object as the function argument. The XDP context object in fact represents the
packet received by the XDP hook.

1 SEC("xdp_redirect_map")
2 int xdp_redirect_map_func(struct xdp_md *ctx)

XDP context object, xdp_md identifier in the source code, is defined as a struct in
linux/bpf.h header file as mentioned in Chapter 2

The program continues with a casting operation that assigns the data fields in context
object to pointers. Casting means conversion from one data type to another type
in programming. This data conversion is needed in order to pass the verifier which
checks pointer access to the packet data [57].

1 void *data_end = (void *) (long)ctx->data_end;
2 void #*data = (void *)(long)ctx->data;

Later, the structs and variables, such as Ethernet header type and header pointer,
which are required for parsing and storing packet data are created accordingly.
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1 struct hdr_cursor nh;

2 struct ethhdr *eth;

3 int eth_type;

4 int action = XDP_PASS;

5 unsigned char *dst;

6

7 /* Parse Ethernet and IP/IPv6 headers */

8 eth_type = parse_ethhdr(&nh, data_end, &eth);
0 if (eth_type == -1)

10 goto out;

XDP Forwarder Program

The XDP Forwarder program implemented in this study determines the egress
interface by performing a look-up on the attached BPF map. The look-up is realized
by the bpf _map_lookup_elem function that takes two arguments, the address of BPF
map and source Ethernet address of the packet; then, it returns the corresponding
value in the map. The information acquired from the map look-up is copied to
the destination header of the packet. Eventually, the final verdict on the packet
is returned at the end of the program. In successful look-up, the final verdict is
XDP_REDIRECT action; otherwise, the default action is set to XDP_PASS that
passes the packet to Linux kernel network stack. The packets captured by this
program are processed in bulks due to utilization of BPF maps as explained in
Sub-section 2.5.4.

1 dst = bpf _map_lookup_elem(&redirect_params, \
2 eth->h source);

3 if (ldst)

4 goto out;

5

6 /* Set a proper destination address */

7 memcpy (eth->h_dest, dst, ETH_ALEN);

8 action = bpf_redirect_map(&tx_port, 0, 0);

9

10 out:

11 return xdp_stats_record_action(ctx, action);

XDP Router Program

The XDP Router performs additional IP level packet parsing in order to obtain
the source and destination IP address as well as the protocol information. Then,
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it runs a FIB look-up function with the acquired parameters to determine the
destination interface. Additionally, XDP Router program utilizes bulk processing
through the BPF maps. The program executes the bpf_fib_lookup helper which
calls the fib_table_lookup() function with the parsed packet information stored in
fib_params structure and returns zero in successful look-up. fib_table_lookup()
function is a system function defined in net/ipv4/fib_trie.c source file in the Linux
kernel. Additionally, fib_params is a bpf_fib_lookup type structure defined in
bpf .h header file.

1 rc = bpf_fib_lookup(ctx, &fib_params, sizeof(fib_params), 0);

When the look-up is successful, the function writes the destination Ethernet address
field of fib_params with the corresponding next-hop ethernet address. Then, the
obtained next-hop address is copied to the destination field in the actual packet
context object.

1 if (h_proto == bpf_htons(ETH_P_IP))

2 ip_decrease_ttl(iph);

3 else if (h_proto == bpf_htons(ETH_P_IPV6))

4 ip6h->hop_limit--;

5

6 memcpy (eth->h_dest, fib_params.dmac, ETH_ALEN);

7 memcpy (eth->h_source, fib_params.smac, ETH_ALEN);
5 action = bpf_redirect_map(&tx_port, \

9 fib_params.ifindex, 0);

After successfully writing the next-hop address, XDP_REDIRECT action is executed.

1 return xdp_stats_record_action(ctx, action);

XDP TX Program

This program that run in the container instance in the prototype simply executes
XDP_TX action on all of the received packets. XDP_TX action has no bulk
processing support since it does not utilize BPF maps.
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1 SEC("xdp_tx_simple")
> int xdp_tx_simple_func(struct xdp_md *ctx)

s {
4 return xdp_stats_record_action(ctx, XDP_TX);
5}

4.1.3 Setting up the XDP programs

After the XDP programs considerately are written in restricted C language, they need
to be compiled in to BPF bytecode using LLVM-+-clang compiler. LLVM is a back-end
infrastructure providing libraries, header files, tools, code analyzers and optimizers to
convert codes into object files [58]. Clang is a compiler of LLVM that compiles C-like
languages. The compiled BPF bytecode is stored an ELF (Executable and Linkable
Format) object, which is a standard cross-platform file format for executables.

Prior to attaching compiled programs into kernel, a BPF file system needs to be
mounted in order to keep BPF maps under a shared file system. This procedure is
called pinning and performed with the following command.

# mount -t bpf bpf /sys/fs/bpf/

Additionally, the JIT compiler should be enabled via below command in order to
increase the performance of program execution.

# sysctl -w net.core.bpf_jit_enable=1

Following the aforementioned actions, the BPF bytecode is ready to be loaded into
the kernel. There are two possible ways to load an XDP program into the kernel:
using iproute2 BPF ELF loader tools or writing a custom loader using 1ibbpf library
functions. iproute2 provides a straightforward loading option; however, it does not
support BPF map structure. Thus, it becomes a necessity to implement a custom
loader when using BPF maps inside the program. In this study, the BPF loader
provided by the XDP project maintainers has been used.

# ip link set dev lo xdp obj xdp_prog.o sec xdp

The BPF loaders load the programs through bpf() system call. If the program
is verified by the kernel, it returns a file descriptor for the program which can be
attached to a designated hook point [44]. A successfully loaded and attached XDP
program can be observed on the interface through ip command as below.
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# ip link show ensl1f0

2: ens1f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 xdp \
gqdisc mq state UP mode DEFAULT group default glen 1000
link/ether 3c:fd:fe:9e:93:78 brd ff:ff:ff:ff:ff:ff
prog/xdp id 898

In a similar fashion, the user-space programs that update BPF map elements are
custom-made by using the system-call wrappers that enable look-ups from kernel-
space to user-space. In this study, the user-space program configuring BPF map
values has been obtained directly from the XDP project source code [59].

4.1.4 Setting up the Docker container for XDP

The Docker container image used for the prototype is the latest version of Ubuntu
with additional tools and header files required to run XDP programs, such as clang
and 11vm. The running container instance is created with —privileged flag in order
to give the container root privileges. Although it is not the best practice to give
such extended privileges to containers, such permissions are required to load XDP
program on the veth device inside the Docker container.

After creation of the container, its PID (process ID) has been linked to the network
namespace exclusively created for this container instance [60]. This allows to attach
custom veth interfaces instead of using the default veth interfaces that docker creates.

# mkdir -p /var/run/netns/
# 1In -sfT /proc/$pid/ns/net /var/run/netns/[container_ id]

Later, the veth pairs and additional network driver settings are configured in accor-
dance with the recommendations [49]. The number of RX and TX queues of veth
pairs are set to 24 since it is the maximum available number of cores in the system.
Additionally, it is observed that the veth devices use only the number of queues they
receive the traffic from. For instance, if the physical network drivers are configured
to utilize 4 RX queues, the veth pairs that receive traffic from this physical network
driver uses 4 RX queues as well although it has 24 available queues.

# ip netns add <container_id>

# ip link add vethO numrxqueues 24 numtxqueues 24 type veth \

peer name vethl netns <container_id> numrxqueues 24 numtxqueues 24
ethtool -K vethO tx off txvlan off

ip netns exec nsO ethtool -K vethl tx off txvlan off

ethtool -K PHY NIC rxvlan off

bridge fdb add MAC_OF_VETH1 dev PHY_NIC self # Unicast filter

H OH O H H



36

Finally, the XDP_TX program has attached to the configured veth peer inside
container with aforementioned BPF program loading techniques.

4.2 Performance measurements

In this section, an overview of the test environment is presented and the measurement
process is described. In the following, the test setup is depicted including the features
of used devices and their placement in the setup along with the system-tuning
configurations which are performed before the measurement process. Later, the
measurement process is outlined in detail to justify the selected performance metrics
as well as the measurement tools.

4.2.1 Overview of experimental test setup

The test environment consists of two Ubuntu servers and a switch device that connects
the servers. The model of the switch is Quanta LY6 equipped with Broadcom Trident
2 chip that provides 1.28 Thps switching capacity [61].

Packet generator Device under test

10.10.12.0/24

Quanta Switch

10.10.11.0/24

Figure 9: Test setup

Ubuntu servers in the setup have Intel(R) Xeon(R) CPU with 48 cores with hyper-
threading. However, hyperthreading functionality is disabled on the server hosting
the prototype in order to avoid instability in processor and cache performance. Thus,
the system can utilize up to 24 cores. Furthermore, the CPU frequency scaling factor
in DUT (device under test) server is set to performance mode which means that
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the CPU will be inclined to run at the possible highest frequency to achieve highest
performance [62].

# echo performance > /sys/devices/system/cpu/cpu0/
cpufreq/scaling governor

Both of the servers have NUMA (Non-Uniform Memory Access) system enabled
by default. In NUMA systems, CPUs are attached to their own local RAM, which
consequently enables fast access from processor to memory [63]. In addition to that,
both servers have Intel Data Direct I/O Technology (Intel DDIO) feature enabled
which provides direct communication between the NIC device and the host processor
cache. Therefore, the NIC device transfers the packets directly into L3 cache. This
mechanism boosts the performance significantly due to elimination of the costly
visits to main memory [64].

Packet generator Device under test (DUT)
CPU Intel(R) Xeon(R) @2.50GHz | Intel(R) Xeon(R) @2.50GHz
NIC Intel XL710 for 40GbE Intel XL710 for 40GbE
PCle v.3 x8, total 64 Gbit/s | PCle v.3 x8, total 64 Gbit/s
Memory | DDR4 Synchronous 2133 MHz | DDR4 Synchronous 2133 MHz
Kernel | 5.4.0-42-generic 5.4.0-47-generic

Table 2: General features of the test environment

Cache Level | Cache size
Lid 768 KiB
L1i 768 KiB

L2 6 MiB

L3 60 MiB

Table 3: Cache levels and sizes in DUT

Additionally, the NIC adapter is connected to a PCle v3 x8 bus offering full-duplex
64 Gbit/s bandwidth. As this bandwidth is already higher than the maximum traffic
rate of 40 Gbit/s supported by the NIC, it is able to transfer the data on wire speed
to the main memory.

On the packet generator server side, the packet generation is performed through
Netmap packet generator which generates raw network packets [65]. In order to
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use netmap packet generator, the kernel is compiled with netmap module and the
module is loaded on the network device driver of the corresponding interface.

4.2.2 Variables in the measurements

In this study, the main target is to measure the overall system performance in terms
of network throughput and CPU utilization. By the definitions acquired from RFC
1242 [66], throughput corresponds to the maximum data rate processed without any
frame loss. Furthermore, frame loss rate refers to the ratio of frames which could
not be forwarded to total frames sent in the constant load. Constant load is defined
as the traffic of fixed size frames at a fixed rate. In addition to that, CPU utilization
refers to the percentage of time that CPU is not idle [67].

To measure these performance metrics in different cases, some variables are decided
and configured in accordance with the test case. These variables can be grouped as
traffic-related and DUT-related variables.

Traffic-related variables are the packet size, the packet rate as a constant load, and
the number of flows. The packet size refers to the total bytes of sent packets including
the packet headers and packet data. The netmap pkt-gen utilized in this study sends
UDP packets with 14 bytes Ethernet header, 20 bytes IP header, 8 bytes UDP header,
and the payload. Packet rate is the number of packets sent from generator to DUT
per second. In addition to that, RFC 3917 defines a flow in the variable 'number
of flows’ as a packet stream consisting of packets with common properties, such as
destination IP address, source IP address, destination port, and source port [68].

DUT-related variables are the number of NIC queues, the number of cores, and
the queue size. Number of NIC queues are the receive and transmit queues of the
interface where the packets are queued for reception or transmission. Number of
cores variable is tied to the previous metric since each RX/TX queue pair is served
by a core. Queue size is the number of descriptors set for the queue. Descriptor
means data segments allocated in memory for the corresponding queue, and there
must be an available descriptor for a packet to be received or transmitted.

4.2.3 Data collection instruments

In order to obtain data related to throughput performance, the number of packets
received, transmitted and dropped on interfaces are observed through ethtool utility.
In addition to that, netmap pkt-gen provides the information regarding the sent
traffic, such as number of packets, the packet rate, and throughput.

The CPU utilization per core has been measured by mpstat tool. For additional
system metrics, perf utility has been used.
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4.2.4 Measurement process

The system has been tested with varying number of CPU cores in DUT and varying
volumes of incoming traffic.

At the DUT side, the number of cores to be utilized are configured through ethtool
command. In essence, this command sets the number of RX and TX queues on the
NIC since each queue has a dedicated interrupt which is served by a processor core.
An interrupt can be served by a different core each time it is raised, or it can be
pinned to a particular core by setting the interrupt affinity. Interrupt affinity refers
to the pinning of an interrupt request to a particular CPU core [69]; as a result the
IRQ is always raised in the pinned CPU core.

# ethtool -L <interface> combined <number of queues>

During the measurements, interrupt affinity is set manually after changing the
numbers of cores by following the suggestion of the official manual of the NIC
device, which is an Intel network adapter from XL710 family with i40e driver. As
recommended by the manual [70], the irgbalance service has been disabled and
interrupt affinity has been manually set. The irgbalance is a service that distributes
the hardware interrupts across the multiple cores to balance the interrupt load [71];
however, manually pinning an interrupt source to a CPU core may provide more
deterministic results during tests. Finally, the interrupt affinity has been configured
by running the ‘set_irq_affinity’ script provided in Intel i40e driver source code
[72].

#[path-to-i40epackage] /scripts/set_irq_affinity -x local enslf0

In addition to that, Receive Side Scaling (RSS) allows the NIC driver to distribute
incoming packets among the available receive queues; thus, among the CPU cores.
RSS runs a hash algorithm using the source and destination IP address and ports in

order to assign the flows to RX queues with a logic and maintain the packet order
[73].

At the packet generator side, netmap packet generator parameters are configured in
accordance with the test case. As defined in packet generator manual [65], -i sets
the execution interface, -1 sets packet size, -d destination IP address, -s source 1P
address, -D destination MAC address, -S source MAC address, -f transmit or receive
mode, -c¢ number of cores to be utilized for execution, -p number of threads to be
utilized, -b batch size, -R number of packets per second to be sent from one thread.
At the end of the execution of packet generator, it returns some useful information,
such as the number of sent packets, average value of sent packet rate, and duration
of the execution.
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# pkt-gen -i ens1f0O -1 60 -d 10.10.41.1:2000-10.10.41.1:2000 -s \
10.10.11.2:41000-10.10.11.2:51000 -D <destination_MAC> \
-3 <source MAC> -f tx -c¢c 24 -p 1 -b 64 -R 1000000

For all the measurements conducted for each test case, the test traffic destination
address has been set to complete the full data path through the prototype: starting
from the physical ingress interface to the container, and then to physical egress
interface. Thus, the packet is received and forwarded to container by XDP Forwarder
program; then, forwarded to egress interface by XDP Router on container veth peer
interface.

Additionally, for every repetition of each test case, the CPU utilization and throughput
metrics are collected during 30 seconds as the traffic was flowing. Test cases are
performed with 3 repetitions; and in occurrence of outlier values, the repetitions are
performed again.



41

5 Results and Discussion

In this chapter, results of the performed measurements are presented and evaluated.
Firstly, the CPU utilization and throughput performance data obtained from initial
measurements are discussed; followed by an analysis on the packet drops observed in
the system. Later, similar tests have been repeated with different number of flows to
reveal the impact of the number of received flows. Throughout these measurements,
the system under test has been configured with the default routing table having only
the routes for physically attached networks.

Later, the results regarding to the performance tests in the presence of thousands of
generated routes, which aim to evaluate the impact of the size of the routing table
on the throughput and CPU performance, are presented and evaluated. Finally,
an overall evaluation of the tested system and the XDP technology are discussed
together with the limitations.

5.1 Analysis of performance at line rate traffic

The network equipment determines the maximum value of data rate the system can
receive, and in this test setup the line rate is 40 Gbit/s due to the 40GbE Ethernet
card. In order to achieve the highest data rate and observe the resulting performance,
the system is tested under traffic with maximum size packets which is 1500 bytes with
Ethernet MTU (Maximum Transmission Unit) size 1500. It is possible to achieve
line rate of 39.3 Gbps (Gigabit per second) with only 3,3 Mpps (Mega packet per
second).

According to measurement results in Table 4, the system has been able to process up
to 19.2 Gbps with one core, and it is observed to be dropping packets after exceeding
the 1.6 million packets per second. Nevertheless, the system can handle the line rate
traffic without any packet loss when utilizing 2 cores at average 55% CPU utilization.
Furthermore, the CPU utilization decreases with higher numbers of cores due to
distribution of the traffic among multiple processing units.

Num. of | Throughput | Packet Rate | Core Util.
Cores (Gbps) (Mpps) (%)

1 19,2 1,6 55

2 39,3 3,3 55

3 39,3 3,3 39

4 39,3 3,3 16

Table 4: Performance with 1500 bytes packet-size
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These results have shown that processing line rate is achievable with big sized packets.
As stated in previous studies, the packet size has no significant impact on packet
processing cost since all the packets are handled by NIC and processor with the same
procedure [74]. Another study [37] supports this fact by highlighting the dominance
of per-packet cost on system performance. This applies to the XDP programs running
in the tested prototype as well, since the XDP programs receive the packets through
context objects pointing to packet data and make the forwarding decisions based on
the header information regardless of the size of the packet as explained in Chapter 4.

For that reason, in the following test-cases, the evaluation steers the focus towards
analyzing the impact of the number of received packets per second by generating the
test traffic with smallest packets to achieve higher packet rate traffic, which emulates
the most challenging scenario [37].

5.2 Scalability and packet drop analysis

In order to reveal the scalability of the solution, the throughput is tested with varying
numbers of RX queues which corresponds to the number of CPU cores utilized for
packet processing. Due to the aforementioned impact of the packet size, all the test
cases are performed under the traffic with 64 bytes packets in compliance with the
minimum possible size for Ethernet frames [75].

The number of RX queues is set up with ethtool as described in Chapter 4 in each
case for different number of cores. Additionally, the sent traffic from packet generator
has been set to have same characteristics for each case. These characteristics are 64
bytes minimum-size raw Ethernet frames, one destination IP address, source and
destination port range with value of 1000, and the burst size of 64 packets. The
traffic load has been distributed evenly on the RX queues of receiving interface by
setting the interrupt affinity manually in addition to RSS.

Figure 10 represents the overview from these tests. The horizontal axis indicates the
average CPU usage value of all utilized cores of the corresponding case. The vertical
axis gives the packet rate which lead to that amount of CPU utilization.

The overall look shows that the system handles higher packet rates as the number
of cores increase. Lower packet rates, up to 3 Mpps, are observed to be producing
similar amount of overhead for 3 to 8 cores as supported by the fairly small difference
between the CPU usage values below 20%. This results from the fact that in lower
packet rates the amount of packets received by each RX queue after equal distribution
is closer for different number of cores. Additionally, the number of packets processed
during each interrupt is higher at higher packet rates [16]. For example, the 3 Mpps
traffic is distributed as 3/6=0.5 Mpps per queue in 6 cores case and 3/8=0.375
Mpps per queue in 8 cores case which results in a proximity in interrupt processing
overhead. On the other hand, for the same number of cores, 6 and 8, the 12 Mpps
traffic is distributed as 2 Mpps and 1.5 Mpps per queue respectively, resulting in a
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Figure 10: Maximum packet rate with corresponding CPU utilization per number of
cores (RX queues)

CPU utilization difference around 17%.

These results indicate that the system is scalable for higher packet rates with uti-
lization of more numbers of cores. However, a notable observation during the tests
has been the increasing packet drop rates on the receiving physical interface as the
incoming traffic rate has been increasing.

Before moving further with packet drop analysis, it is essential to highlight that the
packet drops have been seen solely on the receiving physical interface, which means
that all the packets successfully received by the system have completed the data
path from XDP Forwarder on physical interface to XDP Router on veth interfaces
and to finally intended destination point. Thus, the packet drop metrics analyzed in
the following are obtained from the receiving physical interface.
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Sent Packet loss (%)

(Mpps) | 1 Core | 2 Cores | 3 Cores | 4 Cores | 5 Cores | 6 Cores | 7 Cores | 8 Cores
1 0 0 0 0 0 0 0 0

2 0,006 |0 0 0 0 0 0 0

3 03533 | 0,0006 | 0,0028 | 0,0004 | O 0 0 0

4 0,0027 | 0,0003 |0 0,0002 |0 0,0007 |0

5 0,0040 | 0,0024 |0 0,0022 | 0,0015 | 0,0040 | 0,0007
6 0,6900 | 0,0058 | 0,0008 | 0,0010 | 0,0007 | 0,0045 | O

7 14,7782 | 0,0035 | 0,0031 | 0,0260 | 0,0039 | 0,0017 | O

8 25,3502 | 0,0884 | 0,0057 | 0,0230 | 0,0011 | 0,0255 |0

9 4,9270 | 0,0080 | 0,0093 | 0,0280 | 0,0297 |0

10 14,3765 | 0,0234 | 0,0345 | 0,0164 | 0,0110 | 0,0004
11 22,3144 | 0,4476 | 0,0057 | 0,0017 | 0,0010 | 0,0002
12 0,0299 | 0,0009 | 0,0017 | 0,0016
13 0,6580 | 0,0042 | 0,0311 | 0,0025
14 2,6065 | 0,0288 | 0,0030 | 0,0038
15 0,1478 | 0,0020 | 0,0063
16 0,4534 | 0,0200 | 0,0033
17 3,7882 | 0,0897 | 0,0319
18 1,3561 | 0,0145
19 3,2971 | 0,0031
20 12,7759 | 1,1355

Table 5: Packet drop rates regarding to traffic rate for 1 to 8 cores
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Table 5 presents the packet loss percentage with corresponding traffic rate for number
of cores from 1 to 8. From the table, it is possible to observe the packet rate where
the first packet drop occurs. The outlook of the table which is quite similar to a left
triangular matrix indicates that the packet loss starts occuring when each RX queue
receives approximately 1 Mpps traffic. This pattern may suggest that the queues are
not served fast enough after 1 Mpps which results in insufficiency of RX descriptors
in the receive buffer and consequently drop of the packets. In such a case, NIC drops
the packets without raising an interrupt for the incoming packets; thus, the CPU is
not affected by those packets [74].

This occurrence corresponds with the observations of the study [16], which is depicted
in Table 1 in Chapter 3, showing the decrease in throughput performance with added
functionality. In the reported study, XDP router running on physical interfaces has
reached to approximately 5.2 Mpps with single table, while in the prototype tested
in this research has shown packet drops as early as approximately 1 Mpps per core.
One explanation to such decrease is the concatenated execution of XDP Forwarder
and XDP Router programs, resulting in a summation of BPF map look-up, packet
redirecting, and FIB table look-up costs.

In addition to that, Figure 11, shows the packet drop rate with corresponding packet
rate and CPU utilization under that traffic for 6 to 8 cores. In these plots, the
CPU usage at the point where packet drops upsurge is plotted as a horizontal line.
The common CPU usage value at the upsurge point, around 87% CPU utilization,
indicates that the system undergoes a state where it is incapable of processing more
packets even though the cores have approximately 13% idle cycles.

A possible solution to decrease the packet loss could be to increase the size of the RX
queues, due to the fact that the NIC level drops may result from the unavailability
of receive queue descriptors [76]. In order to see the impact of this metric, the RX
queues are configured with size of 256 and 4096 to be tested with 19 Mpps traffic
with 8 cores. The results in Table 6 show that increasing the RX queue size has
increased the packet loss rate as well. This probably results from the increasing
latency with higher queue size, which affects the number of processed packets per
cycle. On the other hand, in smaller RX queue size, the driver faces the packet loss
due to unavailability of ring buffers. Thus, changing the RX queue size from the
default value, 512, has shown no improvement on the packet loss rate in that case.

RX ring size | Packet Rate | CPU % | Packet drop %

256 19 88,5 0,2007
512 19 88,41 | 0,0254
4096 19 100 8,7496

Table 6: Impact of RX ring size on performance in 8 cores case
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Another remarkable observation has been the increase in utilization of ksoftirqd/n
threads. ksoftirqd/n threads are scheduled to complete the unserved soft interrupts
when these interrupts are not served as fast as they arrive [77]. Below is an instance
of perf statistics, collected at 10 Mpps when 4 cores are utilized, showing the system
utilization of individual functions and the responsible parent process running the
function. While the ksoftirq/n utilization is almost zero in a system that serves
sufficiently, in this instance utilization of ksoftirqd/1 of CPU(1) is already up to
1.67%. This verifies that the system is not able to serve the incoming traffic as fast
as it arrives.

# perf record -C 0-3 sleep 1
# perf report

Overhead Command Shared Object Symbol

7.39% swapper [kernel.kallsyms] [k] fib_table_lookup
4.58% swapper bpf_prog_xdp_router_func [k] bpf_prog_xdp_router
3.22), swapper [kernel.kallsyms] [k] __htab_map_lookup
2.79%, swapper [kernel.kallsyms] [k] veth_xdp_rcv_one
2.76% swapper [kernel.kallsyms] [k] i40e_clean_rx_irq
2.45), swapper [kernel .kallsyms] [k] bpf_ipv4_fib_lookup
2.11%, swapper [kernel.kallsyms] [k] veth_poll

1.95%, swapper [kernel.kallsyms] [k] dev_map_enqueue
1.74% swapper [kernel.kallsyms] [k] i40e_xmit_xdp_ring
1.67% ksoftirqd/1 [kernel.kallsyms] [k] fib_table_lookup

Listing 1: perf profiling tool report for the overhead per function

On top of that, perf report reveals that the impact of XDP Router program on
veth device becomes prominent as complementary functions of XDP router, such as
bpf_prog_xdp_router, _htab_map_lookup, bpf_ipv4_fib_lookup, and especially
fib_table_lookup, take the top places in CPU consumption rating. Moreover,
veth_poll and veth_xdp_rcv_one functions, which belong to veth driver and are
responsible from collecting packets from veth queues, are observed to consume high
CPU power as well. These CPU consumption rates indicate that the XDP Router
function together with veth interface becomes the bottleneck of the system.

This occurence may enlighten the packet drop issue on physical ingress interface as
well. Due to the fact that the XDP Router and veth device bundle serves the queues
slower than the XDP Forwarder program on the ingress interface. Consequently,
XDP Router program picks up the packets from the queues more slowly. As a result,
the ingress RX queues start dropping incoming packets since there is no available
space in RX queues.

In addition to that, examination of the system efficiency in terms of CPU utilization
by metrics such as cache-misses 78] and instructions per cycles [74] can reveal further
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implications regarding to the data plane performance. Cache-misses emerge when
the data needed for an instruction cannot be found in the cache levels; therefore,
resulting in latency in completion of execution. Instruction per cycle is another
program performance defining metric which corresponds to the instructions executed
within one CPU cycle.

# perf stat -C 0-7 -e cycles -e instructions -e cache-references \\
-e cache-misses -r 15 sleep 1
Performance counter stats for ’CPU(s) 0-7’ (15 runs):

22,716,021,975 cycles
46,323,579,339 instructions # 2.04 insn per cycle
128,580,967 cache-references
304,673 cache-misses # 0.237 % of all cache refs

1.0007954 +- 0.0000207 seconds time elapsed ( +- 0.00% )

Listing 2: perf profiling tool statistics for CPU cores 0-7

In case of 19 Mpps traffic with 8 cores, instruction per cycle rate has been measured
to be 2.04 which is an acceptable rate considering the benchmark results of different
packet processing systems [79]; thus, it represents no fundamental bottleneck in this
case. Additionally, the amount of cache-misses is not dramatically high; thus, it does
not explain the observed packet loss.

At this point, further performance and CPU utilization improvements regarding to
XDP Router program require detailed analysis and optimization in terms of the
consumption of cycles, cache utilization, interaction with device driver and so forth.
However, the required code optimization is not performed since it is not within the
scope of this study.

5.3 Impact of number of flows

The system has been tested with different numbers of flows in order to observe the
behavior under changing flow loads. The testing was conducted with flow numbers
starting from 1 to 10000 flows increasing logarithmically. For each flow case, the
tests are performed with 1 core, 2 cores, 4 cores and 8 cores with increasing traffic
rate until the system is fully-loaded. RX queue size is kept at default 512 and sent
packet size is kept at 64 bytes. As highlighted in Chapter 4, the system has been
configured with RSS in order to distribute incoming traffic evenly among the RX
queues.

Single flow tests have shown that the traffic is not distributed among available
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RX queues and only one RX queue has been utilized. This results in the same
performance as if there is one available core although there were available 2, 4, and
8 numbers of cores. Thus, the system has performed packet processing using only
one core and other available cores have stayed idle.

Core Utilization (%)
Packet Rate | 1 core | 2 cores | 4 cores | 8 cores
1 Mpps 30 33 33 33
2 Mpps 69 68 68 68
3 Mpps 100 100 100 100

Table 7: CPU utilization of different numbers of cores with 1 Flow

Similar behavior has been seen with 10 flows case which has resulted in uneven
distribution of the traffic, and the system has processed packets with only one
core. Nevertheless, flow numbers above 100 provided a more remarkable impact on
distribution of the traffic among available queues; consequently, they have affected
the overall performance positively.

Core Utilization (%)
Packet Rate | 2 cores | 4 cores | 8 cores
1 Mpps 16 7 7
4 Mpps 68 32 13
6 Mpps 99 52 22
8 Mpps 65 36
10 Mpps 85 45
12 Mpps 100 59

Table 8: Results for 100 Flows

The results from 1000 and 10000 flows tests have indicated that higher numbers of
flows lead to fairer distribution of the traffic among the RX queues; thus, introducing
a better CPU utilization and slightly less packet loss. For instance, in case with 8
cores in Table 9, the system performance has stabilized after 1000 flows while it was
fluctuating heavily in lower flow rates. The very high packet rates observed in 10
flows case is an impact of the inability to distribute packets to available RX queues.
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CPU Utilization (%) | Packet loss (%)
Flows | 8 Mpps | 12 Mpps 8 Mpps | 12 Mpps
10 19 22,5 42,5348 | 55,0046
100 36 29 0,0262 | 0,0114
1000 38 60 0,006 0,0049
10000 | 37 59 0,0041 | 0,0047

Table 9: CPU utilization and Packet loss comparison per flow number for 8 cores

5.4 Impact of the routing table size

The measurements until this point have been conducted in the case where there have
been only 9 routes consisting of the default gateways of attached network interfaces
and the loop-back address of the host. Thus, with the aim of revealing the cost of
FIB look-ups, the system has been tested with a bigger routing table.

To increase the number of routes in the routing table, a bash script is run to populate
routes indicating next-hop address towards a few of the interfaces in the neighbor
table. In the end, the routing table has grown to have 10,678 route entries. Although
the numbers of routes in a BGP (Border Gateway Protocol) router could be up to
814,000 by the time of writing [80], the generated amount of route entries is considered
to be sufficient for the target of the study and the scale of the implementation.

1 for i in {20..40};

2 do
s for j in {1..254};
4 do

5 ip route add 10.10.$i.$j/32 nexthop via 10.10.13.2 dev ensifl;
6 done;
7 done

After increasing the number of routes in the routing table, the system has been
tested with two different cases. In the first case, the test traffic has sent with only
one destination address; thus, the fib_table_lookup() function searches for the
same address each time. At this point, it should be noted that the route caching
functionality has been removed from Linux kernel since version 3.6 [81]. Thus, the
look-up function executes from scratch each time and searching for the same address
would result in approximately the same time duration for the look-up of each packet
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[82]. In the second case, test traffic has been generated to have multiple destination
addresses to be searched from the table. Each case has been tested with 2,4 and
8 cores with increasing packet rate, while the flow numbers are kept around 10000
since it provides an even traffic distribution among RX queues.

Figure 12 represents the measurements results from the single destination address
case in the bigger routing table. In the figure, the results from the measurements
in Subsection 5.2 are used as a reference to see the impact of routing table size
since those tests have been performed to look-up for a single destination address
in a smaller routing table. The comparison shows that the CPU utilization has
not changed remarkably by the increasing number of routes in the routing table.
However, the packet drop rate has increased significantly for the same packet rates.
This may result from the increase in the time spent for fib_table_lookup function
since it may traverse more routes to find the right match compared to a table with
less routes. Thus, the increasing time spent for each packet causes longer queuing
time in receive queues, and consequent packet drops.

In the following, the system has been tested under the traffic directed towards
multiple destination addresses on the same bigger routing table. Table 10 shows a
comparison of the results with the previous case in order to observe the performance
shift when there are multiple different destination addresses to look-up in the table.
According to the results, CPU utilization has increased slightly while packet drop
rate has surpassed the values from single destination address case in many of the
different traffic rates. In the previous case where the fib_table_lookup() function
has been searching for the same address for each packet, the duration for look-up
function should be approximately the same since the address searched for is always
at the same location at the routing table. In contrast, the time spent to find a
destination address for different addresses would vary regarding to their location
on the routing table since the CPU hits a different location in memory for different
addresses [82]. Thus, it may result in longer processing time and consequent packet
drops on the NIC.
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Figure 12: CPU util. and Packet loss comparison between small routing table and
bigger routing for (a) 4 cores, (b) 8 cores. Traffic towards single destination address.
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Single Destination Multiple Destination
Sent Core util. | Packet loss | Core util. | Packet loss
(Mpps) | (%) (%) (%) (%)
1 4 0 4 0
2 5 0 9 0
3 6 0 11 0
4 10 0 7 0,0006
5 14 0 10 0,0043
6 18 0 21 0,0020
7 28 0,0018 33 0,0030
8 36 0,0003 41 0,0090
9 40 0,0003 46 0,0594
10 46 0,0025 51 0,0004
11 49 0,0055 54 0,0009
12 56 0,0025 58 0,0084
13 60 0,0073 62 0,0043
14 64 0,0071 65 0,0521
15 67 0,0453 70 0,1441
16 73 0,0599 74 0,2478
17 78 0,0611 78 0,7774
17,8 80 0,3420 82 1,0440

Table 10: Results on bigger routing table when traffic towards single destination
address and multiple destination address (with 8 CPU cores)

5.5 Comparison with Linux kernel networking stack

In order to validate the performance gain achieved with XDP, the same data path
scenario is tested with bare Linux kernel networking stack without inclusion of
any XDP components. To replicate the similar scenario with solely Linux network
stack, network namespaces have been utilized. Figure 13 depicts the data path
implementation in which there are three separate network namespaces. Two of the
namespaces are hosting one physical interface and one peer virtual interface, while
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the third namespace is hosting the other peers of veth interfaces. In each network
namespace, the default gateway address is defined with the designated next-hop
address. For instance, in netns £0 the default gateway address is defined as default
via <IP address of veth2> dev vethl. Additionally, each of the veth pairs are
created with 24 RX and 24 TX queues.

Docker container
User space

Kernel space

—

T =~ o a
| & l
| % '
2 e
_________ - |
PHY-1 packet PHY-2
generator receiving end

Figure 13: Linux kernel implementation of test scenario using namespaces

The system is tested with numbers of CPU cores from 1 to 8 with gradually increasing
incoming packet rate. As reported in Table 11, in single CPU core case, Linux data
path processed only 0.4 Mpps without any packet loss, and utilized the 76% of
the CPU core. Furthermore, Figure 14 clearly shows that the XDP solution has
outperformed Linux network stack data path with more than 50% improvement.

Number of | Packet rate | CPU Util.
CPU Cores | (Mpps) (%)

1 0,4 76
2 0,8 72
4 1,4 64
8 3 71

Table 11: Linux networking stack results with 1,2,4,8 CPU cores
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Figure 14: XDP data plane comparison with Linux kernel network stack implemen-
tation

5.6 Evaluation of the results

In overall, the presented results have provided an understanding of the behavior of
XDP in a data-plane implementation and its interaction with the different elements
of the prototype. The main highlights of the observations have been in the areas
such as CPU utilization and scalability of the solution, co-dependency with NIC
device driver, and program code efficiency.

Firstly, the findings have confirmed that the XDP-based solution is scalable with
the number of CPU cores. The prototype at its basic implementation, without any
further performance tuning and optimization, has handled more than 1 Mpps traffic
per queue without any packet loss. When used with larger sized packets, it can
achieve line rate of 40 Gbit/s without requiring no more than 4 cores. In addition to
that, flow tests have indicated that the system behavior is more stable under higher
numbers of flows due to fair distribution of the traffic among the queues.

Another interesting point was that, the routing table size has introduced no significant
effect on the system performance and consequently on the throughput. Therefore, it
gives confidence on that such a forwarding plane can be extended for larger scale
deployments consisting of more associated networks.

Strikingly, the study has proved that XDP provides more than 50% throughput
performance gain in comparison to Linux kernel network stack. Furthermore, the
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rate of this performance gain increases with increasing number of CPU cores as well,
reaching the triple of Linux network stack in 8 CPU cores case. Therefore, XDP
solution was able to achieve 1 Mpps throughput per queue without packet loss, while
the Linux network stack implementation remained at 0.4 Mpps per queue. On the
other hand, 1 Mpps packet rate achieved by XDP is approximately 80% lower than
the performance achieved by the router implementation in the previous study [16].
One of the main reasons of such performance gap is firstly the architecture of the
implementation. The prototype implemented in this thesis work redirects the packets
multiple times throughout the data path, while the reported study runs one routing
program that directly sends the packet to egress interface. Thus, the prototype
in this study has been more costly due to multiple hops in data path, which was
necessary for the target of the research.

Apart from the promising aspects, the packet loss has remained as an unresolved
issue in all of the observed cases as reported. Strikingly, all the packet drops have
occurred on the ingress physical interface of the system, and all of the received
packets have successfully completed the path through veth interfaces until egress
interface. Meaning that, there have been no packet drops by the veth interface itself.
On the other hand, the XDP Router application has led to the highest execution cost
among other programs integrated in the system due to the cost of look-up practice
together with the performance overhead of the veth driver. Considering these facts,
the XDP Router has been the defining element in overall system performance.

In this context, the code base utilized for this study, being retrieved from a multi-
purpose tutorial code-base, has been a limitation for the performance of the system.
Nevertheless, obtained results are promising that a tailored and optimized program
can result in a more improved performance. In order to highlight a complementary
fact, the experimentations and studying the XDP code-base during the study have
stressed that understanding the internals of XDP and developing XDP applications
requires a solid knowledge of Linux kernel, kernel networking stack and kernel
programming. From a network engineer perspective, this aspect together with
the lack of sufficient documentation on the inner-workings of XDP may introduce
challenges in igniting the development process.

All in all, the scalability and throughput results have been promising and encouraging
for further improvements in the domain of fast packet processing for virtualized
network functions exclusively in the scale of edge cloud environments. Additionally,
the veth interfaces which are generally utilized for containers have no insolvable
restrictions on the performance. Thus, XDP as being a quite new technology deserves
further attention and implementations in the research of networking solutions.

5.7 Future research

As the study provided a starting point for the development of XDP-based data
plane for virtual network functions, it has revealed the areas that requires further
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development as well.

For instance, the system designed as an independent utility in the study should be
integrated and tested with a cloud-native container orchestrator such as Kubernetes
and CNI (Container Network Interface) plug-ins in order to prove the compatibility
with cloud-native environments. Furthermore, the prototype was designed in a
way to work as a single tenant system and multi-tenancy has not been considered.
Multi-tenancy in cloud context corresponds to a system where the resources are
shared among different customers; thus, requiring meticulous work for isolation of
the resources such as processing unit and network utilization. As single-tenancy is
not always the case, multi-tenancy support should be studied and implemented in
the design as well.

Additionally, the latency performance, which is not performed in this study, is an
essential metric to determine the performance; therefore, further studies are required
to evaluate this aspect as well.

Another point that needs to be clarified is the compatibility with different NIC devices
and drivers. Since the XDP infrastructure requires the support of the network device
driver, its performance may be in correlation with the features of NIC device. Thus,
testing the system with different NIC cards would bring valuable insights in terms of
system compatibility and performance dependencies.

Finally, XDP has promising features such as XDP__REDIRECT, which is extensively
used in this study, and it possibly enables the implementation of service function
chaining (SFC) concept in the data path. Service function chaining refers to chaining
of network functions to each other based on the tasks required for a traffic flow. Thus,
utilization of XDP data plane for SFC could be an interesting research topic.
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6 Conclusions

The research aimed to evaluate the feasibility of implementing eXpress Data Path
(XDP) fast packet processing framework in container-based virtual network functions
to be utilized in the cloud deployments on the edge. In order to conduct the
performance evaluation, a prototype of XDP-based data plane for container-based
network functions has been designed and implemented.

The prototype has been composed of forwarder and router programs as well as a
container emulating a network function. Then, it was observed with several test
cases which aimed to reveal the performance of XDP and its potential limitations.

The results obtained from these tests have shown that an XDP-based solution
can provide high throughput in different conditions and scale with the number of
processing units. Furthermore, the study has demonstrated that the XDP solution has
surpassed the Linux network stack in terms of throughput and CPU utilization. Thus,
it has potential to provide high-performance networking for the implementations of
network functions on commodity servers.

Crucially, the study has uncovered the limitations and bottlenecks of the XDP-based
prototype, and reported the potential solutions for further improvement. In addition
to that, promising aspects of the XDP technology have been highlighted and the
directions for future research has been discussed.

To conclude, the study has investigated the relatively new technology XDP from
different aspects and reported its implications in the context of accelerating the data
plane for network functions. And the most importantly, the produced output of the
this thesis can serve as a compact knowledge base for the researchers of networking
community who would aim to further explore the XDP technology.
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