
CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

16

Fast Packet Processing with eBPF and XDP: Concepts, Code, 1

Challenges, and Applications 2

MARCOS A. M. VIEIRA, MATHEUS S. CASTANHO, RACYUS D. G. PACÍFICO,
ELERSON R. S. SANTOS, EDUARDO P. M. CÂMARA JÚNIOR, and LUIZ F. M. VIEIRA,
Universidade Federal de Minas Gerais, Brazil

3
Extended Berkeley Packet Filter (eBPF) is an instruction set and an execution environment inside the Linux 4
kernel. It enables modification, interaction, and kernel programmability at runtime. eBPF can be used to 5
program the eXpress Data Path (XDP), a kernel network layer that processes packets closer to the NIC for fast 6
packet processing. Developers can write programs in C or P4 languages and then compile to eBPF instructions, 7
which can be processed by the kernel or by programmable devices (e.g., SmartNICs). Since its introduction in 8
2014, eBPF has been rapidly adopted by major companies such as Facebook, Cloudflare, and Netronome. Use 9
cases include network monitoring, network traffic manipulation, load balancing, and system profiling. This 10
work aims to present eBPF to an inexpert audience, covering the main theoretical and fundamental aspects of 11
eBPF and XDP, as well as introducing the reader to simple examples to give insight into the general operation 12
and use of both technologies. 13

CCS Concepts: • Networks → Programming interfaces; Middle boxes / network appliances; End 14
nodes; 15

Additional Key Words and Phrases: Computer networking, packet processing, network functions 16

ACM Reference format: 17
Marcos A. M. Vieira, Matheus S. Castanho, Racyus D. G. Pacífico, Elerson R. S. Santos, Eduardo P. M. Câmara 18
Júnior, and Luiz F. M. Vieira. 2019. Fast Packet Processing with eBPF and XDP: Concepts, Code, Challenges, 19
and Applications. ACM Comput. Surv. 53, 1, Article 16 (December 2019), 36 pages. 20
https://doi.org/10.1145/3371038 21

22

1 INTRODUCTION 23

The increase in Internet traffic and the growing complexity of services offered in data center net- 24
works have required ever-higher packet processing rates. Also, the dynamicity of service demands 25
requires the network to adapt quickly to maintain adequate levels of quality of service and use 26
available resources efficiently. However, computer networks have been traditionally developed 27
in a static way, embedding the implementation of communication protocols in the hardware of 28
network devices, making it difficult to adapt to current demands. 29

In recent years several proposals have been made to add more programmability to networks. 30
Among them, we can highlight the SDN [28, 43] and NFV [48] paradigms, new computer systems 31

Authors’ address: M. A. M. Vieira (corresponding author), M. S. Castanho, R. D. G. Pacífico, E. R. S. Santos, E. P. M. Câmara

Júnior, and L. F. M. Vieira, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 Prédio ICEx, Belo Horizonte,

MG, 31270-901, Brazil; emails: {mmvieira, matheus.castanho, racyus, elerson, epmcj, lfvieira}@dcc.ufmg.br.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

0360-0300/2019/12-ART16 $15.00

https://doi.org/10.1145/3371038

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

https://doi.org/10.1145/3371038
mailto:permissions@acm.org
https://doi.org/10.1145/3371038

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

16:2 M. A. M. Vieira et al.

and languages, such as POF [61], P4 [14], and more recently the extended Berkeley Packet Filter32
(eBPF) and the eXpress Data Path (XDP) Linux kernel network layer. This work presents eBPF and33
XDP assuming little to no background about the subject by the reader.34

eBPF provides an instruction set and an execution environment inside the Linux kernel. It is35
used to modify the processing of packets in the kernel and also allows the programming of network36
devices. The developer writes an application in restricted C language and then compile the code37
into eBPF instructions. The resulting eBPF code can be processed in the kernel or by programmable38
devices such as SmartNICs.39

XDP is the lowest layer of Linux network stack [31]. It enables developers to install programs40
that process packet into the Linux kernel. These programs will be called for every incoming packet.41
XDP is designed for fast packet processing applications while also improving programmability. In42
addition, it is possible to add or modify these programs without modifying the kernel source code.43
eBPF programs modify the (programmable) kernel operation in runtime, not requiring recompila-44
tion of the kernel.45

The importance of eBPF and XDP is highlighted by its fast adoption since its introduction in the46
Linux kernel in 2014 by both industry and academia. Their use cases have grown rapidly to include47
tasks such as network monitoring, network traffic handling, load balancing, and operating system48
insight. Several companies already use eBPF on projects such as Facebook [26], Netronome [10],49
and Cloudflare [11].50

We organized this tutorial as follows: the remainder of this section introduces the reader to the51
original BPF. In Section 1.2, the architecture of the eBPF machine is described. Section 2 presents52
the eBPF system. In Section 3, we describe aspects of eBPF programs, such as their structure, the53
types of programs available, what maps are and how to use them, the types of maps available,54
what helper functions are, and interaction from user space with libbpf library. In Section 4, we55
explain how eBPF uses hooks and present two of them: the XDP and the TC. Section 5 shows56
examples of eBPF programs and points the reader to extra material. In Section 6, some useful tools57
for developing and debugging eBPF programs are listed. Section 7 describes the existing software58
and hardware platforms that can process eBPF instructions. Section 8 discusses some existing59
industry-led research and open source projects. Section 9 presents the current limitations on eBPF60
and suggestions on how to overcome them. Finally, Section 10 compares eBPF with other similar61
technologies, and Section 11 concludes this work.62

All code in this article was tested using kernel version 5.0. A stable version of the extra material is63
accessible on Zenodo [66]. Step-by-step instructions on how to compile, load and run each example64
shown throughout this text, including a VM with all tools and dependencies necessary to develop65
eBPF programs are available on Github [67].66

1.1 BPF67

Inspired by previous work on in-kernel packet filters [50], the Berkeley Packet Filter (BPF) [46] was68
proposed by Steven McCanne and Van Jacobson in 1992 as a solution to perform packet filtering69
on the kernel of Unix BSD systems. It consisted of a set of instructions and a virtual machine (VM)70
for executing programs written in that language.71

Initially, the bytecode of an application was transferred from the user space to the kernel, where72
it was then checked to assure security and prevent kernel crashes. After passing the verification,73
the system attached the program to a socket and ran on each arriving packet. The ability to securely74
run programs provided by the user in the kernel proved to be a good design choice of BPF. Another75
highlighting factor of BPF was its simple and well-defined set of instructions. Furthermore, there76
existed a Just-In-Time (JIT) compilation engine for BPF in the kernel. Together, all these factors77
were fundamental for the good performance of the tool.78

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

Fast Packet Processing with eBPF and XDP 16:3

Fig. 1. BPF and eBPF processors.

Besides the bytecode instructions, BPF also defines a packet-based memory model (load instruc- 79
tions are implicitly made in the processed packet), two registers: accumulator (A) and index regis- 80
ter (X), an implied program counter, and a temporary auxiliary memory. The left side of Figure 1 81
(Classic BPF machine) illustrates the BPF machine architecture. 82

The Linux kernel has supported BPF since version 2.5. There were no major changes to the BPF 83
code until 2011, when the BPF interpreter was modified to be a dynamic translator [25]. Instead of 84
interpreting the BPF byte code, the kernel was now able to translate BPF programs directly into 85
x86 instructions. 86

One of the most prominent tools that use BPF is the libpcap library, used by the tcpdump 87
tool. When using tcpdump to capture packets, a user can set a packet filtering expression so that 88
only packets matching that expression are actually captured. For example, the expression “ip and 89
tcp” captures all IPv4 packets that contain the TCP transport layer protocol. This expression can 90
be reduced by a compiler to BPF bytecode. Code 1, based on a bpf man page [35], is a BPF program 91
that filters packets to capture only TCP segments. The mnemonic were expanded for clarity. 92

Basically, what Code 1 does is as follows: 93

• Instruction (1): loads two bytes (16 bits) at offset 12 of the frame into the accumulator. The 94
offset 12 represents the packet type in the Ethernet frame. 95

• Instruction (2): compares the accumulator value with 0x800, which is the EtherType value 96
for IPv4. If the result is true, then the program counter jumps (jumptrue) to instruction (3) 97
and otherwise jumps (jumpfalse) to instruction (6). 98

• Instruction (3): loads the offset 23 of the frame, as a byte, into the accumulator. The offset 99
23 represents the protocol field of the IPv4 packet. The count is from the beginning of the 100
Ethernet frame. 101

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

16:4 M. A. M. Vieira et al.

Table 1. Description of the eBPF Register Set

Register Description

r0 return value from functions and programs
r1 - r5 arguments passed to functions
r6 - r9 registers that are preserved during function calls
r10 stores frame pointer to access the stack

• Instruction (4): compares the value with the constant 6 (value of the IPv4 packet protocol102
field for a TCP segment). If true, then skip to instruction (5); otherwise, go to instruction103
(6).104

The packet filtering program executes until it returns a result, which is usually a Boolean. Re-105
turning a value other than zero (instruction (5)) means that the packet has matched the filter,106
whereas returning zero (instruction (6)) indicates the packet does not match the filter and there-107
fore will be discarded.108

1.2 Extended BPF109

Although BPF was very useful for packet filtering, the community came to realize that other areas110
could also benefit from its ability to instrument the kernel. To transform it into a universal in-111
kernel virtual machine [21], a lot of improvements were introduced to both the BPF machine and112
its overall architecture. This new version is called eBPF (extended BPF), or simply BPF, while the113
original iteration became cBPF (classic BPF). eBPF was introduced in version 3.15 of the Linux114
kernel. The content in this section is based on the eBPF specification [60].115

The right side of Figure 1 illustrates the eBPF engine. The number of registers has increased116
from 2 to 11 (of which 10 are write-registers), the registers width has changed from 32 bits to117
64 bits, the instruction set is now 64 bits, and the new engine has a stack of 512 bytes. Global data118
stores, called maps, were also included, allowing programs to persist data between executions and119
share information between each other and with user space. It was also added the option to call120
functions that run inside the kernel, called helper functions [60].121

In cBPF, it was necessary to define the jumps for true and false cases in a program. In eBPF, it122
is only necessary to define the true jumps, and the false jumps follow the execution sequence of123
the program (called jump-fall-through).124

The eBPF’s instruction set architecture (ISA) was updated to include function calls. Those calls125
follow the C calling convention. Parameters are passed to functions through registers, just as it126
happens in native hardware. This allows mapping an eBPF function call to one hardware instruc-127
tion, which results in almost no overhead. eBPF uses this feature to enable helper functions, al-128
lowing programs to make system calls and manipulate storage (maps). The eBPF virtual machine129
supports dynamic loading and program reloading. This way, programs can be changed on runtime,130
modified, or reloaded again if necessary.131

Table 1 describes the functionality of each eBPF register. Register r0 stores the function return132
value, which indicates, at the end of the computation, what action will be taken in the forwarding133
of the packet. Register r10 is the only read-only register, and it stores the address to the BPF stack.134

As eBPF follows the C calling convention, arguments are passed as register values to functions.135
Thus registers r1-r5 are reserved for this purpose, while registers r6-r9 have their values pre-136
served between function calls.137

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

Fast Packet Processing with eBPF and XDP 16:5

Fig. 2. eBPF Workflow.

2 EBPF SYSTEM 138

The eBPF system is composed of a series of components to compile, verify, and execute the source 139
code of developed applications. This section describes more details on each of them. 140

2.1 Overview 141

The typical workflow of the eBPF system is illustrated in Figure 2. An eBPF program is written in 142
a high-level language (mainly restricted C). The clang compiler transforms it into an ELF/object 143
code. An ELF eBPF loader can then insert it into the kernel using a special system call. During 144
this process, the verifier analyzes the program and upon approval the kernel performs the dy- 145
namic translation (JIT). The program can be offloaded to hardware, otherwise it is executed by the 146
processor itself. 147

2.2 Compiler 148

Starting in version 3.7, the LLVM compiler collection has a backend for the eBPF platform. It 149
allows the development of eBPF programs in a subset of C and generation of executable code in 150
eBPF format through the clang compiler. 151

This subset of C excludes some syscalls and libraries, but it provides helper functions to ma- 152
nipulate eBPF maps and to perform other common tasks. Partial solutions to these restrictions are 153
presented later in Section 9. 154

The main restrictions are as follows: 155

• eBPF can only use a subset of C language libraries. For example, the printf() function is not 156
available for use; 157

• Non-static global variables are not allowed; 158
• Only bounded loops are allowed. 159
• Stack space is limited to 512 bytes. 160

There are also efforts from open source projects such as IOVisor [17, 32] and from VMWare [68] 161
to implement a P4 [14] compiler for eBPF. Early versions already exist but are still not ready for 162
production. Also, the BPF Compiler Collection (BCC) project [7] enables extra abstractions over 163
the standard C code to facilitate writing and interacting with eBPF programs, as well as libbpf 164
(Section 3.6), the main upstream library for user space interaction with eBPF. 165

2.3 Verifier 166

To ensure the integrity and security of the operating system, the kernel uses a verifier that performs 167
static program analysis of eBPF instructions being loaded into the system. Its implementation is 168
available at kernel/bpf/verifier.c in the kernel source code. 169

Among other things, the verifier checks whether a program is larger than allowed (current limit 170
is 106 instructions), whether or not the program ends, whether the memory addresses are within 171
the memory range allowed for the program, and how deep the execution path is. It is called after 172
the code has been compiled and during the process of loading the program into the data plane. A 173
good overview is presented by Miller [49]. 174

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

16:6 M. A. M. Vieira et al.

The verifier uses two passes to decide whether to reject a program or not. In the first pass, it175
uses a depth-first search to check if the program instructions can be parsed into a Directed Acyclic176
Graph (DAG). eBPF programs that do not have backward jumps or that have only predefined177
size loops (which can thus have loop unroll) can be synthesized into a DAG, guaranteeing their178
termination. Moreover, the DAG is useful to check for unreachable instructions (the graph must179
have only one connected component) and to compute the worst-case execution time.180

The second pass explores all possible paths from the program’s first instruction. It does so by181
creating a state machine, where it verifies if states present correct behaviors and also keeps records182
of the ones it has already checked [59]. The verifier uses the states already checked for pruning183
and so be able to reduce its amount of work to do. It also limits the maximum length of paths to184
analyze. This limit was initially 64k instructions but currently equals the maximum program size185
allowed.186

It is also worthwhile to mention two more points about the eBPF verifier. The first one is related187
to the fact that some eBPF functions can only be called by programs with GPL compatible licenses.188
Because of that, the verifier checks wither the licenses of the functions used by a program and the189
program’s license are compatible and rejects the program if they are not.190

Last, the verifier does not allow memory accesses beyond the local variables and packet bound-191
aries to ensure the integrity and security of the kernel. To access any bytes in the packet, it is192
always necessary to perform a border check (as shown later in Section 5.2.1). However, each byte193
only needs to be checked once, unless the storage space of the packet gets modified. This way,194
during the analysis of the program, the verifier guarantees that all memory accesses made to the195
packet are in checked addresses. If the eBPF program does not do this type of check, then the196
verifier rejects it, and so it cannot be loaded in the kernel [31].197

3 EBPF PROGRAMS198

Several types of applications can be implemented with eBPF, e.g., performance analysis, packet199
filtering, and traffic classification, to name a few. The main advantage of the eBPF system as a whole200
is offering a flexible and safe programmable environment inside the Linux kernel. For example,201
eBPF programs can be loaded and modified during runtime and are capable of interacting with202
kernel elements such as kprobes, perf events, sockets, and routing tables [44].203

However, the subsystems and functionalities available to an eBPF program depend on where204
it is loaded in the kernel, i.e., which layer or subsystem it is attached to, which is defined by a205
program’s type. In this section, we discuss different eBPF program types, present key-value store206
data structures called maps, and also show some helper functions available to eBPF programs.207

3.1 How and When Are eBPF Programs Executed?208

To execute an eBPF program, it is first necessary to attach it to an interface that allows custom209
programming. This interface is called a hook. Hooks allow the registration of programs for certain210
events. In Section 4, we describe two Linux kernel hooks to which eBPF programs can be attached,211
XDP and TC.212

eBPF programs execute whenever there is an event for which they were registered. In Computer213
Networking, common events are sending or receiving a packet.214

3.2 Program Types215

Each eBPF program has a type, which determines three important aspects: What is the input passed216
to it (its context), which helper functions it is allowed to use, and to which kernel hook it will be217
attached. For example, two of the many types of eBPF programs are socket filter and tracing. The218
input parameter for a socket filter program is a socket buffer, containing packet metadata generated219

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

Fast Packet Processing with eBPF and XDP 16:7

by the kernel but stripped of L2 and L3 information. A tracing program, however, receives a set 220
of register values. Also, the subsets of helper functions available for these two types are not the 221
same, although there is an overlap of common general-purpose functions. 222

Supported program types are defined on the header file linux/bpf.h by the enum 223
bpf_prog_type. On version 5.3-rc6, the kernel offers a total of 25 valid different program types, 224
some of which are listed below: 225

• BPF_PROG_TYPE_SOCKET_FILTER: program to perform socket filtering; 226
• BPF_PROG_TYPE_SCHED_CLS: program to perform traffic classification at the TC layer; 227
• BPF_PROG_TYPE_SCHED_ACT: program to add actions to the TC layer; 228
• BPF_PROG_TYPE_XDP: program to be attached to the eXpress Data Path hook; 229
• BPF_PROG_TYPE_LWT_{IN, OUT or XMIT}: programs for Layer-3 tunnels; 230
• BPF_PROG_TYPE_SOCKET_OPS: program to catch and set socket operations such as retrans- 231

mission timeouts, passive/active connection establishment, and so on; 232
• BPF_PROG_TYPE_SK_SKB: program to access socket buffers and socket parameters (IP ad- 233

dresses, ports, etc) and to perform packet redirection between sockets; 234
• BPF_PROG_TYPE_FLOW_DISSECTOR: program to do flow dissection, i.e., to find important 235

data in network packet headers. 236

These program types are related to networking, which is the focus of this work. However, 237
there are other program types for kernel tracing/monitoring (e.g., BPF_PROG_TYPE_PERF_ EVENT, 238
BPF_PROG_TYPE_KPROBE and BPF_PROG_TYPE_TRACEPOINT), cgroups (e.g., BPF_PROG_TYPE_ 239
CGROUP_SKB and BPF_PROG_TYPE_CGROUP_SOCK) and others [44, 51]. The full list of supported 240
program types can be obtained directly from the kernel source code with the following command: 241

$ git grep -W ’bpf_prog_type {’ include/uapi/linux/bpf.h 242

3.3 Maps 243

Maps are generic key-value stores available to eBPF programs. Keys and values are treated as 244
binary blobs, allowing the storage of user-defined data structures and types, whose sizes must be 245
informed during map definition. 246

Maps are created using the bpf system call, allowing map manipulation through the map’s file 247
descriptor. This is done by passing the command BPF_MAP_CREATE (defined by enum bpf_cmd) and 248
the bpf_attr union with extra parameters to the bpf system call: 249

bpf(BPF_MAP_CREATE, &bpf_attr, sizeof(bpf_attr)).

In this case, the following attributes should be set on bpf_attr: 250

(1) map_type: type of the map to be created; 251
(2) key_size: number of bytes to store the key; 252
(3) value_size: number of bytes to store the value; 253
(4) max_entries: number of rows in the map. 254

A user-space process can create multiple maps, and they can be accessed by both user-space 255
processes and eBPF programs loaded in the kernel, enabling data exchange between the two en- 256
vironments. To access a map, an eBPF program needs to declare a special global variable, of type 257
struct bpf_map_def (defined by libbpf), in the maps ELF section. During the load process, the 258
file loader uses the syscall above to create any declared maps and pass their file descriptors to the 259
program, which are later converted into actual pointers by the verifier for use at run time. Code 2 260
shows an example where a BPF_PROG_TYPE_ARRAY map named mapname is declared. 261

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

16:8 M. A. M. Vieira et al.

3.3.1 Map Types. There are many different map types available for eBPF programs, and they262
are defined in the enum bpf_map_type, from linux/bpf.h. Each map type provides a different263
behavior, some of them being used generically, while others have specific use cases.264

Examples of eBPF map codes are provided by the kernel. Version 5.3-rc6 of the kernel lists a265
total of 24 valid different map types. Some of them are266

• BPF_MAP_TYPE_ARRAY: a map where entries are indexed by a number, as in a high-level267
programming language array. It follows the RAM model, where the input to query an item268
is an address.269

• BPF_MAP_TYPE_PROG_ARRAY: a map that stores references to eBPF programs. Its use allows,270
for example, the call of subprograms to deal with specific situations.271

• BPF_MAP_TYPE_HASH: stores entries using a hash function.272
• BPF_MAP_TYPE_PERCPU_HASH: a map that is similar to the BPF_MAP_TYPE_HASH. Allows the273

creation of a hash table for each processor core.274
• BPF_MAP_TYPE_LRU_HASH: a map that stores entries using hash function. When the table is275

full, the policy to remove element LRU, i.e., the elements to be removed are the ones that276
were last used the longest.277

• BPF_MAP_TYPE_LRU_PERCPU_HASH: allows the creation of a hash table for each processor278
core with LRU remove policy.279

• BPF_MAP_TYPE_PERCPU_ARRAY: a map that is similar to the BPF_MAP_TYPE_ARRAY. Allows280
the creation of an array for each processor core.281

• BPF_MAP_TYPE_LPM_TRIE: longest-prefix match (LPM) trie.282
• BPF_MAP_TYPE_ARRAY_OF_MAPS: an array to store references to eBPF maps.283
• BPF_MAP_TYPE_HASH_OF_MAPS: a hash table to store references to eBPF maps.284
• BPF_MAP_TYPE_DEVMAP: stores reading references of network devices.285
• BPF_MAP_TYPE_SOCKMAP: stores socket references. It can be used to implement socket redi-286

rection, for example.287
• BPF_MAP_TYPE_QUEUE: a map with behavior similar to that of a queue.288
• BPF_MAP_TYPE_STACK: a map with behavior similar to that of a stack.289

The list of all supported map types can be obtained directly from the kernel source code with290
the following command:291

$ git grep -W ’bpf_map_type {’ include/uapi/linux/bpf.h292

3.3.2 Lifetime of Maps and Map Pinning. Every eBPF object (programs, maps, and debug info)293
has a reference counter (refcnt) that is maintained by the kernel [63]. When a user-space process294
creates a map with the call bpf_create_map(), the kernel initializes the map refcnt to 1. The295
kernel then increments the map refcnt whenever a new eBPF program that uses the map is loaded296
and decrements it whenever one of them is closed. The map refcnt will also be decremented297
when the process that created it exits (or crashes). When a refcnt reaches zero, a memory free is298
trigged, destroying the eBPF object related to the counter. This flows represents, in a simple way,299
the lifetime of an eBPF map.300

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

Fast Packet Processing with eBPF and XDP 16:9

The scheme just described allows sharing the same eBPF map between several programs at 301
once. It keeps the map alive as long as its parent process or some eBPF program that uses it is 302
alive. However, there is also another way to keep eBPF maps alive: by doing map pinning. 303

A user-space process can pin a map (or any other eBPF object) to the BPF file system, a minimal 304
kernel space file system located at /sys/fs/bpf/. When a map is pinned to this file system, the 305
kernel increments its refcnt, which allows it to stay alive even though no program is using it. 306
Similarly, when a map is unpinned, its refcnt gets decremented, and again it may be destroyed if 307
it is not being used. 308

The map pinning can be done in several ways: by using the bpf() system call from user space 309
(with command BPF_OBJ_PIN), through libbpf (Section 3.6), by using bpftool (Section 6.2), or by 310
using a special map structure provided by iproute2 (Section 6.1). This alternative structure, called 311
bpf_elf_map, is compatible with the one provided by the kernel and can be used by eBPF programs 312
instead of bpf_map_def. It exposes extra members, such as pinning, which can be used to define 313
the map scope. This field can receive three distinct values: PIN_GLOBAL_NS, PIN_OBJECT_NS, and 314
PIN_NONE. 315

Maps created with PIN_OBJECT_NS have local scope, being unique to the program that declared 316
them. As a consequence, maps with the same declaration can co-exist in different programs. In this 317
case, a specific directory will be created in the BPF file system to store the nodes corresponding to 318
those maps. If the value PIN_OBJECT_GLOBAL is used, then the map is created with a global scope, 319
enabling it to be shared by multiple programs. This map will receive an entry in the directory 320
globals in the pseudo-file system. PIN_NONE indicates that the map should not be fixed in the file 321
system, disabling sharing it with other applications. Finally, a map can be unpinned by removing 322
its file from the BPF file system. This removal can be done using the syscall unlink(). 323

3.3.3 Locked Memory. eBPF maps use locked memory, which is a resource that is usually lim- 324
ited by many systems. Default limits may be too low, which may cause programs to be rejected 325
at load time. To overcome this restriction, increase the locked memory limit to a sufficient one or 326
even remove it entirely. This limit can be changed with ulimit -l <size>. 327

3.4 Helper Functions 328

eBPF differs from cBPF in several ways, one being the ability to allow programs to call the so- 329
called helper functions. These are special functions offered by the kernel infrastructure to enable 330
interaction with the context of each hook and other kernel facilities and structures, such as maps, 331
routing tables, tunneling mechanisms, and so on. 332

Tasks performed by helper functions include interacting with maps, modifying packets, and 333
printing messages to the kernel trace. Since there are many program types, and each has a specific 334
execution context, the list of functions callable by a specific function represents a subset of all 335
helper functions implemented by the kernel, which varies depending on the hook the program is 336
attached to. For example, function bpf_xdp_adjust_tail() is used to remove the last bytes of a 337
packet, effectively decreasing the packet’s size. However, as the name indicates, it is only available 338
at the XDP hook. The BCC project maintains a list of helper functions for each program type [8]. 339

The helper functions available to eBPF programs are restricted to the list provided and imple- 340
mented by the kernel. The addition of new helper functions can only be done through extensions 341
to the kernel source code, since extensions through kernel modules are not allowed. New func- 342
tions should follow a calling convention shared by all functions on eBPF programs, limiting the 343
maximum number of input parameters to 5. Parameter passing is done through the use of registers 344
r1-r5, requiring no interaction with the stack. 345

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

16:10 M. A. M. Vieira et al.

The number of helper functions available is large and increases constantly with new kernel346
versions. Version 5.3-rc6 offers a total of 109 such functions. Some of these are highlighted below:347

• bpf_map_delete_elem, bpf_map_update_elem, bpf_map_lookup_elem: used to remove,348
install or update, and search elements from maps, respectively;349

• bpf_get_prandom_u32: returns a 32-bit pseudo-random value;350
• bpf_l4_csum_replace, bpf_l3_csum_replace: used to recalculate Layer-4 and Layer-3351

checksums, respectively;352
• bpf_ktime_get_ns: returns time since system boot, in nanoseconds;353
• bpf_redirect, bpf_redirect_map: functions to redirect packets to other network devices.354

The second allows specifying the device dynamically through a special redirection map;355
• bpf_skb_vlan_pop, bpf_skb_vlan_push: remove/add, respectively, VLAN tags from a356

packet;357
• bpf_getsockopt, bpf_setsockopt: similar in functionality to user-space calls to358

getsockopt() and setsockopt() to get/set socket options.359
• bpf_get_local_storage: returns a pointer to a local storage area. Depending on the pro-360

gram type, this area can be shared between multiple program instances running in parallel.361

The declarations of helper functions are spread across several header files included in the di-362
rectory tools/testing/selftests/bpf in the kernel source code. However, most of them are363
in bpf_helpers.h. Some common operations to perform endianness conversion are declared by364
bpf_endian.h, placed in the same folder. This file offers BPF-compatible versions of well-known365
functions like ntohs() and htons(), in the form of bpf_ntohs() and bpf_htons(), for example.366

As explained earlier, the kernel provides the implementation of these functions, and eBPF pro-367
grams only need to be compiled against the header files containing their signature, with no need368
for their .c counterpart. This can be done by passing the path to these files in the kernel source369
code to clang using the -I flag. However, it is also possible to make a local copy of the header370
files needed and avoid compiling against the kernel tree, making the code easier to compile and to371
distribute.372

3.4.1 Tail Calls. eBPF programs can call other program to run next, never returning to the373
caller, via tail calls. They can be used, for example, to simplify complex programs and build dy-374
namic chains of programs [62]. Tail calls are implemented as long jumps, and they reuse the cur-375
rent stack frame to avoid creating a new one, leading to minimal overhead when compared to376
function calls. The use of tail calls involves the use of (i) a specialized map, called program ar-377
ray (BPF_MAP_TYPE_PROG_ARRAY), to store references of eBPF programs, and (ii) a helper function378
(bpf_tail_call) to execute the tail calls. The program array can be filled by user space with key-379
value pairs, where the values are the file descriptors of the eBPF programs. The helper function380
receives three arguments: the context, a reference to the program array map, and a lookup key.381

Tail calls have some limitations, however. As the chain of tail calls can form loops, the maximum382
number of tail calls is currently limited to 32 to avoid infinite loops. Furthermore, eBPF only allows383
programs of the same type to be tail called. The same is true for the translation type, which should384
match the caller’s (JITed or interpreted).385

3.5 Return Codes386

The codes returned by eBPF programs vary in meaning and value depending on the program type.387
For example, an XDP program (Section 4.2), returns a verdict about what should be done with the388
packet after processing (pass along, drop, redirect, etc.), which is defined by enum xdp_action in389
bpf.h. TC return codes (Section 4.3) have a similar meaning, but use a different enumeration type.390

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

Fast Packet Processing with eBPF and XDP 16:11

Socket filters, however, use the return code to indicate the packet length to be passed to the stack, 391
being able to trim or even discard the packet entirely. 392

3.6 Interaction from User Space with libbpf 393

Although the kernel exposes the bpf() syscall to interact with the eBPF framework from user 394
space, it is a single tool serving many purposes, making it rather complex. A more user-friendly 395
API is offered by libbpf [39], which is a user-space library developed by the kernel community for 396
that matter. It is available under tools/lib/bpf on the kernel source code and is also distributed 397
in a stand-alone version on GitHub [40], which mirrors the corresponding files from the kernel. 398
To include this library, follow the steps on the README to compile the library and link it to your 399
code: 400

$ LIBBPF_DIR=<path-to-libbpf>/src 401
$ clang -I${LIBBPF_DIR}/root/usr/include/ -L${LIBBPF_DIR} myprog.c -lbpf 402

The root directory can be different based on the DESTDIR used during libbpf compilation. 403
Finally, include the library in the C code: 404

405

Several examples available in the directory tools/testing/selftests/bpf demonstrate use 406
cases of this library and can serve as a good starting point. Also, the stand-alone version on GitHub 407
has detailed instructions on how to build a integrate libbpf into projects without requiring com- 408
piling against the kernel source. 409

This API includes a few direct wrappers of the bpf() system call and exposes several struc- 410
tures to help the interaction with the eBPF system. For example, the user can handle information 411
about maps, programs, and object files using struct bpf_map, struct bpf_program, and struct 412
bpf_object, respectively. Each of these object-like types has specific getters and setters, whose 413
names start with the name of the structure, followed by a double underscore and a declarative 414
name of the action to be performed. The following paragraphs list some of the most common 415
functions for each of these object types. 416

After compiling a .c file containing eBPF programs with clang, the object file generated will 417
contain several ELF sections corresponding to each program. A user-space program can interact 418
with such file using the bpf_object__* family of functions. Some examples include the following: 419

• bpf_object__open, and bpf_object__open_xattr: read an object file and returns a 420
pointer to a struct bpf_object. The _xattr version allows specifying the program type; 421

• bpf_object__load, and bpf_object__load_xattr: load the programs from a struct 422
bpf_object into the kernel. The _xattr version allows specifying the desired log level; 423

• bpf_object__pin_maps: allows handling pinning of all maps from an object file; 424
• bpf_object__for_each_program: macro to iterate over each program from an object file; 425
• bpf_object__find_program_by_title: returns the handle to a BPF program based on its 426

section name. 427

Some of the functions above also have their respective counterparts (unload, close, unpin). 428
Another useful set of functions included in the API allows handling programs separately and 429

can be used with the program iterator showed above, for example, to apply specific actions to each 430
program in a file. These functions have a bpf_program__* signature, and some are shown below: 431

• bpf_program__is_<type>, and bpf_program__set_<type>: getters and setters, respec- 432
tively, for a program’s type. Each type has its own pair of functions, in which <type> is 433
replaced by the corresponding name (e.g., sched_cls, sched_xdp, etc.). 434

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

16:12 M. A. M. Vieira et al.

Fig. 3. Dropworld example illustrating the structure of an eBPF program.

• bpf_program__load: loads a given program to the kernel;435
• bpf_program__fd: returns the file descriptor for a BPF program;436
• bpf_program__pin: pins a given program to an specific file path;437
• bpf_program__set_ifindex: sets a device’s ifindex to offload maps and programs to.438

At last, functions starting with bpf_map__* support actions on map objects, ranging from cre-439
ation, information retrieval, reuse, pinning, and so on.440

• bpf_map__def: returns basic map information (type, size, etc.);441
• bpf_map__reuse_fd: allows the reuse of an existing map when loading a new program;442
• bpf_map__resize: used to change the number of maximum entries allowed in a map;443
• bpf_map__fd: returns the file descriptor for a given map;444
• bpf_map__for_each: macro to iterate over all maps in an object file;445

This section is not supposed to give an extensive discussion of all available functions, but rather446
give the reader a glimpse of the facilities offered by libbpf. The parts of the API that were left447
out include interaction with perf buffers, preprocessor helpers, and more. For the complete list of448
all available calls, as well as the full signature of the functions shown, please check the libbpf.h449
header file in the source code. Example code using libbpf will be shown later in Section 5.450

3.7 Basic Program Structure451

Figure 3 illustrates the basic structure of an eBPF program. It presents a simple XDP program that452
drops all received packets. More details about it will be given in Section 4. The library linux/bpf.h453
has all struct and constants definitions used by the eBPF programs, except for specific subsystems454
such as Traffic Control (TC) and perf, which need extra header files. As a rule of thumb, all eBPF455
programs should include this file.456

Return values and the input parameter received by programs depend on the hook they will be457
attached. As shown in Figure 3, XDP programs receive a pointer to a struct xdp_md, which is458
explained in detail in Section 4.2.1. Programs on other hooks receive different context structures.459
See Section 5 for example programs on other hooks.460

Note that the program shown does not contain a main function, usual on standard C programs.461
The program’s starting point is indicated by its section in the ELF object file. When compiled,462
the program shown will be placed on the default .text section. Section 5 shows the definition of463
custom sections.464

Below, we show the object file and disassembler output of the program example from Figure 3.465

466

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

Fast Packet Processing with eBPF and XDP 16:13

Fig. 4. Linux kernel network stack.

The first instruction writes 1 (XDP_DROP) to register r0. Remember from Table 1 that r0 con- 467
tains the return value of an eBPF program. The second instruction just exits. Now that the reader 468
understands the basic program structure of an eBPF program, the next section covers XDP. 469

4 NETWORK HOOKS 470

In Computer Networking, hooks are used for intercepting packets before the call or during execu- 471
tion in the operating system. The Linux kernel exposes several hooks to which eBPF programs can 472
be attached, enabling data collection and custom event handling. Although there are many hook 473
points in the Linux kernel, we will focus on two present in the networking subsystem: eXpress 474
Data Path (XDP) and Traffic Control (TC). Together, they can be used to process packets close to 475
NIC on both RX and TX, enabling the development of many network applications. This section 476
explains how eBPF can be used to program these two hooks and how programs can be loaded to 477
each one. 478

4.1 Kernel’s Networking Layers 479

Packets entering the OS are processed by several layers in the kernel, as shown in Figure 4. These 480
layers are socket layer, TCP stack, Netfilter, Traffic Control (TC), the eXpress Data Path (XDP), and 481
the NIC. 482

Packets destined to a userspace application go through all these layers and can be intercepted 483
and modified during this process by modules such as iptables, which resides in the Netfilter layer. 484
As explained before, eBPF programs can be attached to several places inside the kernel, enabling 485
packet mangling and filtering. 486

4.2 eXpress Data Path 487

eXpress Data Path (XDP) is the lowest layer of the Linux kernel network stack. It is present only 488
on the RX path, inside a device’s network driver, allowing packet processing at the earliest point 489
in the network stack, even before memory allocation is done by the OS. It exposes a hook to which 490
eBPF programs can be attached [31]. 491

In this hook, programs are capable of taking quick decisions about incoming packets and also 492
performing arbitrary modifications on them, avoiding additional overhead imposed by process- 493
ing inside the kernel. This renders the XDP as the best hook in terms of performance speed for 494
applications such as mitigation of DDoS attacks. 495

After processing a packet, an XDP program returns an action, which represents the final verdict 496
regarding what should be done to the packet after program exit. 497

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

16:14 M. A. M. Vieira et al.

Table 2. Description of XDP Action Set

Value Action Description

0 XDP_ABORTED Error. Drop packet.
1 XDP_DROP Drop packet.
2 XDP_PASS Allow further processing by the kernel stack.
3 XDP_TX Transmit from the interface it came from.
4 XDP_REDIRECT Transmit packet from another interface.

4.2.1 XDP Input Context. The context seen by an XDP program is defined by the single in-498
put parameter passed to it by the kernel. It is of type struct xdp_md, defined by bpf.h, and is499
reproduced here as Code 3. Upon program execution, the data and data_end fields contain the500
pointers to the beginning and the end of packet data, respectively. These values must be used to501
guide packet access, as further explained in Section 5. The third value inside the structure is the502
data_meta pointer, which holds the address of a memory area free to be used by XDP programs503
to exchange packet metadata with other layers. The last two fields hold the indexes of the in-504
terface that received the packet and the corresponding RX queue, respectively. When accessing505
these two values, the BPF code is rewritten inside the kernel to access the kernel structure struct506
xdp_rxq_info that actually holds those values.507

Although the first three fields hold pointer values, their C data type is a regular 32-byte unsigned508
integer. To properly use the memory addresses, a program must first cast them, which is usually509
done through the following code snippet, present at the beginning of almost all XDP programs:510

511
Here, ctx is the input of an XDP program, of type struct xdp_md shown above.512

4.2.2 XDP Actions. Table 2 lists all possible XDP actions, their values, and their description.513
The action is specified as a program return code, which is stored at register r0 right before the514
eBPF program exits.515

The first four actions are a simple return value (no parameters), which indicate the packet should516
be dropped while raising an exception (XDP_ABORTED), dropped silently (XDP_DROP), passed along517
to the kernel stack (XDP_PASS) or immediately retransmitted through the same interface (XDP_TX).518

The XDP_REDIRECT action allows an XDP program to redirect packets to (i) another NIC (physi-519
cal or virtual), (ii) another CPU for further processing, or (iii) an AF_XDP socket for userspace pro-520
cessing. Different from the others, this action requires a parameter to specify the redirection target.521
This is done through one of two helper functions: bpf_redirect() or bpf_redirect_map(). The522
former receives the target’s interface index and is focused on network devices. The latter is a more523
generic alternative, which performs lookups on an auxiliary map to retrieve the final target, which524

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

Fast Packet Processing with eBPF and XDP 16:15

can be both net devices or CPUs. The second option is recommended, since it provides much bet- 525
ter performance if compared to bpf_redirect() by batching packet transmits, and it also offers 526
better flexibility, as map entries can be modified dynamically from user and kernel spaces. 527

4.2.3 XDP Modes of Operation. For increased performance, eBPF programs attached to the XDP 528
alter the packet processing pipeline at the device driver level, which requires explicit support 529
by the associated network driver. Some drivers for high-speed devices such as i40e, nfp, mlx* 530
and the ixgbe family already have such functionality. On devices compatible with these drivers, 531
XDP programs are executed directly by the driver, even before these are handled by the operating 532
system. This is called XDP Native mode. BCC Project [9] maintains an up-to-date list of XDP- 533
enabled drivers. 534

However, the kernel offers a compatibility mode called XDP Generic, which enables XDP pro- 535
gram execution for devices without native support at the driver level. On this mode, XDP execution 536
is done by the operating system itself, emulating native execution. This way even devices without 537
explicit XDP support can have programs attached to them, at the cost of reduced performance due 538
to socket buffer allocation extra steps required to perform the emulation [47]. 539

The system automatically chooses between these two modes when loading the eBPF program. 540
Once loaded, it is possible to check the mode of operation using the ip tool, as shown in the 541
following section. 542

There is yet another mode of operation, XDP Offload. As the name suggests, the eBPF program 543
is offloaded to compatible programmable NICs (Section 7.2.1), achieving even greater performance 544
if compared to the other two modes. This mode should be indicated explicitly when loading the 545
program. 546

4.2.4 XDP and XDP Offload Example. To demonstrate how to compile and load XDP programs, 547
we will use the example from Figure 3. It is a simple XDP program, which drops every packet as 548
soon as they arrive at the network interface. 549

After saving the example in a dropworld.c file, the code can be compiled into an ELF object 550
file using the clang compiler: 551

$ clang -target bpf -O2 -c dropworld.c -o dropworld.o 552

The ip tool can load the object file into the kernel. In the example code, the program does not 553
have any section tag, so the generated bytecode resides inside the default section (.text) in the 554
ELF object file. This section should be specified when loading the program. The -force parame- 555
ter indicates that the program should be loaded even if there is another program loaded on that 556
interface, which will get replaced. The [DEV] parameter should be changed to the corresponding 557
interface name. 558

ip -force link set dev [DEV] xdp obj dropworld.o sec .text 559

After loading the program, the ip tool can also be used to verify that it is attached to the interface 560
on the XDP hook. 561

$ ip link show dev [DEV] 562

DEV: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 xdp qdisc 563
mq state UP mode DEFAULT group default qlen 1000 564

link/ether 00:16:3d:13:08:80 brd ff:ff:ff:ff:ff:ff 565
prog/xdp id 27 tag f95672269956c10d jited 566

The keyword xdp on the first line of output indicates that an XDP program is attached to that 567
interface in XDP Native mode. Other possible outputs could be xdpgeneric and xdpoffload for 568

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

16:16 M. A. M. Vieira et al.

Table 3. Description of TC Set of Actions

Value Action Description

0 TC_ACT_OK Delivers the packet in the TC queue.
2 TC_ACT_SHOT Drop packet.
−1 TC_ACT_UNSPEC Uses standard TC action.
3 TC_ACT_PIPE Performs the next action, if it exists.
1 TC_ACT_RECLASSIFY Restarts the classification from the beginning.

the other two modes of operation. The program can also be removed from the interface by passing569
the parameter off:570

ip link set dev [DEV] xdp off571

In this last example, the eBPF program was executed at the XDP hook by the driver, using the572
CPU. To offload programs, the same method as before can be used but passing the xdpoffload573
parameter to the ip link set command:574

ip -force link set dev [DEV] xdpoffload obj dropworld.o sec .text575

As before, to remove the program just execute the following command:576

ip link set dev [DEV] xdpoffload off577

4.3 Traffic Control Hook578

Currently, although the XDP layer is well suited for many applications, it can only process ingress579
traffic (packets being received). To process egress traffic (transmitting packets), the closest layer580
to the NIC that has access to the entire Ethernet frame is the Traffic Control (TC) layer.581

This layer is responsible for executing traffic control policies on Linux. In it, the network admin-582
istrator can configure different queuing disciplines (qdisc) for the various packet queues present583
in the system, as well as add filters to deny or modify packets.584

The TC has a special queuing discipline type called clsact. It exposes a hook that allows queue585
processing actions to be defined by eBPF programs. Pointers to the packet to be processed are586
delivered to the configured eBPF program as part of its input context: a struct __sk_buff. This587
structure is a UAPI for certain fields that the program is allowed to access from the kernel’s socket588
buffer internal data structure. It has the same data and data_end pointers as struct xdp_md but589
also has much more information if compared to the XDP case. This is explained by the fact that at590
the TC level, the kernel has already parsed the packet to extract protocol metadata, hence the richer591
context information passed to the eBPF program. The entire declaration of struct __sk_buff is592
omitted for brevity but can be seen on include/uapi/linux/bpf.h.593

During program execution, the input packet can be modified, and the return value indicates to594
TC what action should be taken for it. The library linux/pkt_cls.h defines the available return595
values. The most common ones are listed in Table 3.596

The loading of programs on the TC hook is done using the tc tool, available in the iproute2597
package. The following command illustrates how to create the clsact qdisc and load an eBPF598
program to process the packets on interface eth0:599

tc qdisc add dev eth0 clsact600
tc filter add dev eth0 <direction> bpf da obj <ebpf-obj> sec <section>601

The <direction> parameter indicates which direction the program should be associated with,602
which can be ingress or egress. <ebpf-obj> and <section> should be the names of the file603
containing the compiled eBPF code and the section to load the program, respectively.604

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

Fast Packet Processing with eBPF and XDP 16:17

To check whether there is any program already loaded on eth0, use the following command: 605

tc filter show dev eth0 <direction> 606

For an example of a functional eBPF program for the TC layer and its interaction with the XDP 607
layer, please check our repository on GitHub [67]. 608

4.4 Comparison between XDP and TC 609

Both hooks can be used for similar applications, such as DDoS mitigation, tunneling, and han- 610
dling link layer information. However, since XDP runs before any socket buffer allocation takes 611
place, it can reach higher throughput values than programs on TC. The latter, however, can benefit 612
from extra parsed data available through struct __sk_buff and execute eBPF programs for both 613
ingress and egress traffic, being the lowest layer on TX. 614

5 EXAMPLES 615

This section presents a few examples with in-depth code explanations to help the reader become 616
familiar with eBPF programs. The first example describes a program that allows only IPv4 TCP 617
segments, similarly to the BPF example in Code 1. In the second example, we show the interaction 618
between user and kernel spaces through libbpf, while the third one shows how programs on the 619
XDP and TC layers can work together to collect statistics. Finally, we point the reader to a few 620
more external examples. 621

5.1 TCP Filter 622

The first example is a program to only accept packets with TCP segments (Code 4). This is similar 623
to the example in Code 1, but it uses eBPF to drop packets with no TCP segment. Here we present it 624
in two perspectives: the higher level C code and the the actual eBPF assembly-like code generated 625
after compilation. 626

5.1.1 C Code. This program was designed to be loaded into the XDP hook, so the input param- 627
eter of the function must be of type struct xdp_md, as discussed in Section 4.2.1. The bytes of 628
the packet being processed are delimited by the data and data_end pointers, which must be used 629
throughout the program to access the packet. Type conversions for these two values are standard, 630
so Lines 9 and 10 should be used at the beginning of every eBPF program that accesses packet 631
data. By using data, the parsing of headers can be done with the standard header files provided 632
by Linux. 633

The main difference, however, to other common packet parsing Linux programs is that bound 634
checks are necessary before actually accessing protocol header data. Since the kernel verifier 635
performs strict memory bound checks (Section 2.3), every access to packet data needs to be 636
covered by an if statement with a border check (Lines 14 and 21). Each byte only needs to be 637
checked once, unless helper functions that modify the storage space of the packet are used (e.g., 638
bpf_xdp_adjust_head()). In that case, it is necessary to redo all checking after calling such func- 639
tions. If an eBPF program does not perform this type of check, then it gets rejected during load 640
time by the verifier and is not loaded into the kernel. 641

After extracting the packet’s protocol number, the program checks if it corresponds to the TCP 642
protocol and allows it to go through the stack (Line 26). If not, then the packet is just dropped 643
(Line 28). 644

5.1.2 eBPF Bytecode. Upon compilation, clang generates an object file with the eBPF instruc- 645
tions, which can then be loaded into the kernel. As explained in Section 2.3, the verifier creates a 646
DAG based on the program. Figure 5 shows the respective DAG in this example. Each DAG node 647

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

16:18 M. A. M. Vieira et al.

Fig. 5. Directed acyclic graph example of Code 4.

contains one or more eBPF instructions. The conditional jump nodes are the nodes that contain648
two output lines and a light gray background. The solid line indicates the next Acyclic Control649
Flow Graph (ACFG) node. Dotted lines indicate jumps to another ACFG node. In our example,650
there are three different kinds of conditional jump instructions: jgt (jump if greater), jne (jump651
if not equal), and jeq (jump if equal). The last number on each of this instructions indicates how652
many instructions to jump when the condition is valid.653

To better understand this eBPF program, remember that register r1 starts with a pointer to the654
input context stored in main memory and register r0 stores the return value (Table 1).655

In the first node, the first assembler instruction sets r0 (from Table 1) to 2 (XDP_PASS as seen in656
Table 2. Moreover, load instructions compute the references to the packet’s beginning and ending657

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

Fast Packet Processing with eBPF and XDP 16:19

from the input passed (Lines 10–12). Then the bounds of the Ethernet header are checked to guar- 658
antee valid memory access later (required by the verifier) (Lines 14–16). If the check fails, then the 659
first jump instruction switches the flow to the exit instruction, ending the program. Otherwise, 660
bytes 12 and 13 of the Ethernet header are loaded (counting from 0), which is the Ethernet type 661
field. Then, a byte swap is done to set the endianness (Line 19). 662

The second jump instruction compares whether the Ethernet type is 0x0800 (Line 19). Then the 663
bounds of the IP header are checked to guarantee valid memory access later (again, required by 664
the verifier) (Lines 21–23). Next, the IP protocol field is extracted from the IPv4 packet, and then 665
the program checks whether it is the TCP protocol (value 6) (Line 26) (last gray background node 666
in the DAG). Finally, the packet is passed along to the kernel, since register (r0) was previously 667
loaded with the value 2 (XDP_PASS), which indicates acceptance. If the IP packet does not contain 668
a TCP header, then the value 1 (XDP_DROP) is loaded to r0. The last instruction tells that the code 669
terminates. 670

5.2 User and Kernel Space Interaction 671

Following, we present the xdp1 example, extracted directly from the kernel source code, present in 672
the samples/bpf directory. It is divided into two parts: xdp1_kern.c is the actual eBPF program 673
to be compiled and loaded into the kernel, while xdp1_user.c is a user-space counterpart to load 674
the eBPF program into the kernel and interact with it through maps. We show the code for each 675
one and discuss them separately below. 676

5.2.1 Kernel Space. The file xdp1_kern.c [54] contains an eBPF program that processes each 677
packet on the XDP hook, extracts the corresponding IP protocol number, counts the number of 678
packets received per protocol using a per-CPU array map called rxcnt and finally drops all in- 679
coming traffic. 680

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

16:20 M. A. M. Vieira et al.

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

Fast Packet Processing with eBPF and XDP 16:21

The first thing to point out is that a C source file can contain many eBPF programs. They are 681
separated into unique sections in the ELF file generated by the compiler. The section label above 682
the corresponding function (Line 40) indicates to the compiler the name of the ELF section that 683
will contain the program in the generated object file. This information is required while loading 684
the code into the kernel so that the system knows which ELF section to load. Section labels are also 685
used during map (Line 17) and program license (Line 89) declarations, both of which have fixed 686
values. The verifier uses the license section to determine which helper functions will be available 687
to the user, as some of them are restricted to programs declaring GPL compatible licenses. 688

Similarly to the previous example, the program parses the packet headers up to the IPv4 or IPv6 689
headers. After determining the Layer-4 protocol type (Lines 77 and 79), the program retrieves the 690
counter for the corresponding protocol using the lookup helper function (Line 83). This function 691
returns a pointer to the current value stored in the map if it exists, or NULL otherwise. This address 692
can be used to change the stored data directly, without the need for a map update operation. Finally, 693
the program returns the action that must be taken by the XDP hook for the current packet, which 694
in this case is always XDP_DROP, indicating that the packet should be discarded. 695

5.2.2 User Space. The statistics collected by the kernel and stored on the map rxcnt are then 696
queried by a user-space application, implemented by the file xdp1_user.c [55]. For brevity, we 697
highlight below only the meaningful parts of this program. 698

First, instead of using the facilities of iproute2 as shown in Section 4.2.4 to load the program to 699
the kernel, this example implements a custom loader based on libbpf (Section 3.6). This method 700
yields a higher degree of control over how the program in xdp1_kern.c is loaded to the kernel, 701
which can be modified programmatically from the user-space application. For such, libbpf.h and 702
bpf.h are included to allow interaction with the eBPF system from user space: 703

The program information to be loaded is passed through the bpf_prog_load_attr structure, 704
including the program type, the object file containing the program, and the interface identifier to 705
which it should be associated. 706

This structure is then used to load the program into the XDP hook. In the case of success, after 707
the call, the variables obj and prog_fd contain the detailed information of the code already loaded 708
and its file descriptor, respectively. The descriptor is used to identify the program from the others 709
currently loaded in the kernel, which is necessary for future interactions with this program. 710

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

16:22 M. A. M. Vieira et al.

After loading the eBPF program into the kernel, the reference to the rxcnt map is obtained. The711
function bpf_map__next returns an iterator for the list of maps declared in the program. Since in712
this case there is only one declared map, the value of that iterator can be used to obtain the file713
descriptor referring to it. The libbpf.h library also offers other functions to get map descriptors714
by name or by index in the map list.715

Finally, the eBPF program is ready to be attached to an interface, and the userspace application716
can enter the infinite loop inside the poll_stats() function.717

The poll function poll_stats(), using the file descriptor of map rxcnt, performs periodic718
lookups to it and lists all the existing entries along with the statistics calculated so far.719

Note that since rxcnt is a per-cpu array map, stored data are actually spread across multiple720
CPUs. The helper bpf_num_possible_cpus (Line 37) retrieves the number of CPUs used by the721
program, which is used to set the size of the array that will hold to data from each CPU (values).722
Then, an infinite loop queries the entire map from time to time to retrieve recently collected statis-723
tics. This is done with the bpf_map_get_next_key iterator function, which yields one map key at724
a time, enabling iterating through all entries in the map in order. Remember from the kernel-side725

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

Fast Packet Processing with eBPF and XDP 16:23

program that the keys are IP protocols numbers, so given the map size declared (256), iterating 726
through all keys corresponds to iterating through all IP protocol numbers possible. 727

The user-space version of bpf_map_lookup_elem is used (Line 49) to actually read the map 728
values associated with the corresponding key from all CPUs at the same time, which are then 729
stored by the helper function in the values array. These values are then added to get the overall 730
statistic (Line 51), and if the value obtained is greater than what was seen the last time, then the 731
difference is printed to standard output, showing the user how many packets with that specific 732
protocol number were received during the sampling interval. 733

This example shows how user and kernel spaces can interact through eBPF programs and maps. 734
All data collection and packet handling on the fast path (kernel) is executed by a minimal, opti- 735
mized eBPF program, while an agent retrieves the data periodically on the slow path (user space) 736
and can take actions based on it, for example, display to the user. This is a very powerful and useful 737
approach that can be applied and extended to many different scenarios. 738

5.3 Cooperation between XDP and TC 739

The following example consists of two separate eBPF programs, one to be attached to the XDP layer 740
and another to TC. Together, they track the number of packets and bytes exchanged between two 741
different IPv4 addresses and store these pieces of information on a map, tracking both RX and TX. 742
This example demonstrates some of the unique facilities offered by iproute2 (Section 6.1), how 743
programs can be loaded without the need of a custom user-space program, and how programs in 744
different layers can interact through maps. 745

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

16:24 M. A. M. Vieira et al.

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

Fast Packet Processing with eBPF and XDP 16:25

Besides standard C types, maps can also handle user-defined structures. For example, struct 746
pair and struct stats (Lines 15 and 20) are used here as key and value, respectively, for the 747
trackers map (Line 27), where communication statistics will be stored. The statistics consist on 748
the number of RX and TX packets and bytes, which are tracked for each unique pair of IPv4 ad- 749
dresses seen by an interface. 750

Note that the map definition is different from the one in the previous example. The bpf_elf_map 751
structure is used by iproute2, hence the inclusion of the header file iproute2/bpf_elf.h, which 752
is added to the system when iproute2 is installed from source. Besides slightly different field 753
names, it also contains an extra pinning field, which can be used to define the map’s scope, as 754
discussed in Section 3.3.2. The value set for this field determines there should be a single trackers 755
map, which will be shared by both programs, instead of a separate copy for each. 756

This same source file holds the two programs use, in two different ELF sections. Section rx 757
(Line 81) has an XDP program that will process packets as soon as they arrive on the system. The 758
function parse_ipv4 (Line 35) executes all parsing necessary to extract source and IP addresses 759
from the packet. Besides the pointers to packet data and a buffer to place the address information 760
in, it also receives a Boolean value as an input parameter. It indicates if this is an incoming or 761
outgoing packet. Since we want to track each pair of communicating IPs, packets flowing in both 762
directions should be tracked by the same entry in the map. Thus, the program interprets source 763
and destination IP addresses as local or remote. On RX, the destination IP is local (the host’s or 764
possibly a guest), whereas the source IP is remote. On TX, it is the other way around. 765

Once the IP pair is extracted from the packet, it is passed to the function update_stats to update 766
the trackers map accordingly. It also receives a parameter is_rx, which will indicate if the packet 767
seen is incoming or outgoing. The function retrieves the previous statistics for the corresponding 768
address pair (Line 59) and checks if an entry already exists. If not, then a new entry is created 769
with a call to bpf_map_update_elem with the BPF_NOEXIST flag (Line 77). In this case, the return 770
value of bpf_map_update_elem is ignored, since there is not much the program can do if the call 771

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

16:26 M. A. M. Vieira et al.

fails. If stats is not null, then the values are updated directly using the that pointer (Lines 61–67).772
The program terminates returning a XDP_PASS code, to just pass the packet along to the stack773
normally.774

Since there is no XDP layer on TX, the closest we can get to handling the packet just before775
sending it to the NIC is by attaching an eBPF program to the TC layer. The program on section776
tx does just that. It is in essence the same as the XDP version, loaded to RX, with just small777
changes to handle packets going on the other direction. Note that besides the arguments passed778
to the auxiliary functions, the input context and the return codes are different (as explained in779
Section 4.3), since this program will be loaded on TC.780

In this example, two programs on different layers work independently to fill the same map. This781
same idea can be extended to enable sharing information between programs inside the kernel, in782
addition to user space.783

5.4 Other Examples784

The examples shown above demonstrate some basic aspects that should be considered during the785
development of eBPF programs. They also show how to interact with user space programs.786

Linux kernel: other useful examples are offered by the source code of the Linux kernel, located787
in two separate directories: samples/bpf and tools/testing/selftests/bpf. Both contain pro-788
grams that demonstrate the use of various features and hooks on kernel stack, with new programs789
being added to each new version of the kernel. Most of the examples in the first directory are di-790
vided into two separate files, one with user space code to load the program (files ending in user.c)791
and the other with the implementation of the eBPF program to be loaded in the kernel (files ending792
in kern.c). In general, examples in this folder represent stand-alone projects that may be useful for793
various tasks. The examples on the second directory are used as the basis for running functional794
tests during the development of the kernel. The actual eBPF programs that go into the kernel795
are placed inside the progs/ sub-directory, while the remaining files on the root correspond to796
user-space programs and scripts used to load them.797

XDP Project: beyond the examples in the kernel, the official XDP tutorial [70] also presents798
examples with step-by-step instructions, explaining different features of the XDP hook in detail.799

L4 load-balancer: Netronome provides code for an XDP program called l4lb that implements800
an L4 load balancer [53]. The program processes incoming network packets and calculates a hash801
value based on the source IP address along with TCP or UDP ports, to ensure that all packets from802
the same flow are processed in the same server. The generated hash is used as a key in an eBPF803
map. This eBPF map is populated with the address of the available servers for which the program804
can redirect the packets. This program extends and inserts an external IP header with data from805
the map. Then, the packet is forwarded to the corresponding server. This program could also be806
offloaded to a SmartNIC, saving CPU cycles.807

Programmable Receive Side Scaling: Receive Side Scaling (RSS) allows to map a receiving808
packet to be processed by a CPU core. This is important to distribute network traffic across mul-809
tiple CPUs in multiprocessor systems. RSS techniques are used by many network adapters to dis-810
tribute the computation of packets to a set of distinct CPUs through the use of multiple queues.811
However, the implementations are usually proprietary and hardware-based, allowing little or no812
programmability. Using an eBPF program, packet distribution can be modified on demand through813
map values or full replacement of the loaded eBPF program [53].814

6 TOOLS815

This section introduces some tools that can be useful for developing and debugging eBPF programs.816

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

Fast Packet Processing with eBPF and XDP 16:27

6.1 iproute2 817

iproute2 is a set of user space tools to control, configure, and monitor the kernel’s network. ip 818
and tc are example of these tools. Both offer alternative ways of loading eBPF codes into the kernel 819
without the need for a user space program making use of the libbpf library or bpf system call. 820
Examples on how to use both ip and tc tools were shown previously in this text. 821

In addition, iproute2 has its own interface to interact with the eBPF system, offering additional 822
functionalities such as the ability to specify the scope of eBPF maps allocation. Unfortunately, its 823
extra features makes it incompatible with libbpf loader. For example, when using iproute2, maps 824
are declared using an alternative structure (bpf_elf_map), defined by iproute2/bpf_elf.h. An 825
example usage is as follows: 826

This structure is similar to bpf_map_def of libbpf but has extra fields, such as the pinning, 827
used to define the map’s scope (which was described in Section 3.3.2). So, iproute2 can load 828
libbpf programs, but the opposite is not true as libbpf does not know how to handle the extra 829
functionalities [2]. 830

6.2 bpftool 831

The bpftool [15] is a user-space debug utility that can also load eBPF programs, create and manip- 832
ulate maps, and collect information about eBPF programs and maps. It is part of the Linux kernel 833
tree and is available at tools/bpf/bpftool. Here we present just some of its functionalities. 834

• It can list loaded programs with the command: 835

bpftool prog show 836

• To print the instructions of an specific program, use: 837

bpftool prog dump xlated id <id> 838

• It is possible to list and print the contents of maps at runtime: 839

bpftool map 840
bpftool map dump id <map id> 841

• It can also perform some management operations, including loading programs, performing 842
searches, or updating map values. An example for the last item is 843

bpftool map update id 1234 key 0x01 0x00 0x00 0x00 value 0x12 0x34 844
↪→ 0x56 0x67 845

6.3 llvm-objdump 846

The llvm-objdump tool (version 4.0 or higher) provides a disassembler to transform the compiled 847
byte code into a format readable for humans before the user attempts to inject it into the kernel. 848
Also, it is useful for inspecting the ELF sections of the compiled eBPF file. The command below 849
shows how to use the disassembler: 850

$ llvm-objdump -S dropworld.o 851

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

16:28 M. A. M. Vieira et al.

6.4 BPF Compiler Collection852

The open-source project BPF Compiler Collection (BCC) [7] aims to facilitate the development of853
eBPF programs. It provides a set of frontends that can be used to interact with the eBPF system854
using high-level languages such as Python and Go.855

The project also has a series of example tools built using BCC capable of performing various856
tasks in the operating system. These tools can perform tasks such as analyzing the number of857
system calls by an application, and the time elapsed during a disc read. As they are based on eBPF858
programs, they can be used to analyze actual production systems with low additional overhead.859

7 PLATFORMS860

There are several platforms that make use of the eBPF instruction set to add programmability to861
different environments beyond the Linux kernel. In this section, we present the most prominent,862
divided by their nature: software or hardware.863

7.1 Software864

7.1.1 Linux Kernel. As discussed previously, the Linux kernel was the origin of eBPF and is865
the most popular platform, with the most active development being the main focus of this text.866
The eBPF applications inside the kernel are not only restricted to network processing but can867
also be applied to kernel instrumentation and monitoring. Thus, eBPF programs today represent868
an import toolset to perform Linux introspection and performance analysis, with important open869
source projects such as IOVisor [32] offering many solutions on this front.870

7.1.2 Userspace BPF. The Userspace BPF (uBPF) [65] is an open-source project that adapts the871
eBPF processor to run in userspace. uBPF project has a copy of the eBPF interpreter and JIT com-872
piler stripped of all kernel-specific data structures, allowing users to embed an eBPF machine into873
other projects running in userspace. By leveraging the uBPF source code, one can easily add pro-874
grammability with eBPF to other tools and environments. Similarly to uBPF, project rbpf offers an875
alternative implementation of the eBPF VM in Rust [52]. Since uBPF runs on userspace, it does not876
have the restrictions imposed by the eBPF verifier like requiring unrolling loop.877

However, differently from the eBPF system in the kernel, uBPF does not offer native support to878
maps and does not have any helper functions implemented. Nonetheless, it can be easily extended879
to support these features, as was done in Reference [34], who used it as part of the BPFabric880
programmable virtual switch, discussed next.881

7.1.3 BPFabric. To deal with the limitations of OpenFlow, [34] propose a new SDN architecture882
called BPFabric. BPFabric is a switch architecture that allows the data plane to be programmed with883
eBPF instructions by using a modified version of uBPF.884

Since eBPF programs can be dynamically modified, it allows the parsing of arbitrary protocols885
and the use of eBPF maps to store states. New helper functions can be developed to add support to886
new features and to provide services such as telemetry, statistics collection, and packet tracking.887

The control plane hosts an agent that communicates with the data plane through the South-888
bound API. The agent is responsible for (i) changing the behavior of the switch, (ii) receiving889
packets, (iii) reporting events, and (iv) reading and updating table entries. When the agent re-890
ceives the compiled code from the controller, it uses the eBPF ELF Loader to modify the switch891
pipeline. The eBPF Loader calls the verifier to check the code. On success, it must perform the892
allocation of the required eBPF tables and convert the received byte code into a switch-specific893
format.894

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

Fast Packet Processing with eBPF and XDP 16:29

When receiving a packet, the eBPF processor executes the previously loaded programmed eBPF 895
instructions onto the packet. At the end of the pipeline, it returns a routing decision to drop the 896
packet, sent it to the controller, forward it to some output port, or flood it. 897

7.2 Hardware 898

7.2.1 Netronome SmartNICs. Smart network interface cards (SmartNICs) are network devices 899
capable of having their functionality modified on runtime to implement different modes of opera- 900
tion. Instead of just providing connectivity and basic Layer-2 and physical layer processing, these 901
devices can execute user-defined packet processing making use of dedicated cores and memory, 902
freeing many cycles from the computer’s CPU. To the best of our knowledge, the only company 903
currently offering this kind of product (with support for eBPF) in the market is Netronome. 904

Network administrators can define packet processing routines in P4 or eBPF, for example, and 905
load these programs to Netronome cards, which will execute the code provided upon packet re- 906
ception and transmission. Different languages are supported by different firmware versions, which 907
can be loaded to the SmartNIC without a reboot or removal of the device from the server. 908

With the corresponding firmware version, eBPF programs running on the TC and XDP layers 909
can be seamlessly offloaded to these devices for increased performance. Most drivers and code 910
necessary to perform the offloading are already part of the upstream kernel. 911

Given their great processing power, SmartNICs have become a good alternative for low-latency 912
and high speed workloads. Since some functionality can be implemented directly in the hardware, 913
packets can be modified and sent back to the network without even having to go up the operating 914
system’s network stack. Moreover, programs can be modified and updated on-the-fly. Typical use 915
cases for such devices are early packet filtering, rate limiters, DDoS mitigation tasks, load balanc- 916
ing, RSS jobs, packet switching, and so on. 917

8 PROJECTS WITH EBPF 918

Although fairly recent, eBPF has already been used by many groups to power interest research- 919
and industry-led projects. These range from tasks to support production systems operations to 920
techniques to provide new network services. This section discusses some of these to demonstrate 921
the wide spectrum of possible applications to eBPF. 922

The recent demand for greater network programmability has led to the emergence of tech- 923
nologies such as segment routing [29]. This technique allows network administrators to specify 924
different actions to be performed on packets at specific points in the network. Using MPLS labels 925
or the IPv6 protocol with a special field called Source Routing Header (SRH), each packet is en- 926
capsulated with an ordered list of routing and processing actions, called segments. As the packet 927
is moved over the network, enabled devices process the list of segments and perform the actions 928
specified by it. This allows the implementation, for example, of different network functions [4]. 929

The Linux kernel already supports segment routing over IPv6 since version 4.10 but with only a 930
few processing options, such as routing and sending and receiving labeled packets. Reference [24] 931
used the eBPF framework to make the creation and specification of new segments more generic and 932
flexible. Through the addition of new helper functions, the authors extended the Linux kernel to 933
allow the implementation of segments in the form of eBPF programs. Thus, new network functions 934
can be easily developed and associated with Linux routing rules, making it easier to integrate with 935
segment-based routing over IPv6 environments. 936

Several other projects that make use of the eBPF framework to add programmability to the 937
data plane in different contexts. InKeV [5] is a network virtualization platform that uses eBPF 938
programs to modify the data path of virtual data center networks. To solve the OpenFlow fixed 939

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

16:30 M. A. M. Vieira et al.

matching problem, Reference [33] proposes to utilize eBPF programs to provide varied matching940
fields. Reference [64] uses eBPF to create an extensible datapath architecture to the Open vSwitch941
virtual switch. Reference [12] proposes a new version of the iptables tool using this technology.942

In IoT scenarios and the edge computing paradigm, the data collected from sensors can be re-943
quested by several entities. In this case, the information is duplicated. In Reference [6], an eBPF944
program controls the packet duplication operation.945

Some companies already use eBPF in production environments, such as Cloudflare, which uses946
XDP for denial-of-service attack mitigation, load balancing, and eBPF on upper layers for socket947
filtering and dispatching [45]. Another example comes from Facebook, which developed an L4948
load balancer based on eBPF, called Katran [26]. Also, Netflix has been using eBPF for performance949
monitoring and system profiling [36].950

Moreover, eBPF technology has been playing an important role in container networking. The951
veth interface type, which is commonly used on Linux for communication between containers952
received support for Native XDP on kernel 4.14 [41]. The Cilium [20] open-source project uses953
eBPF extensively to provide networking and security for microservice applications, being aware954
of higher-level details than just network headers. By loading eBPF programs to containers, Cilium955
can apply per-container security and networking policies. Weave Scope is another project that has956
been leveraging eBPF for a while to track TCP connections on Kubernetes clusters [69]. Project957
Calico has also announced earlier this year that a new data plane for container networking based958
on eBPF is being developed [57].959

Finally, eBPF-based open source projects have also emerged in recent years. Cilium [18] is a960
project to provide security in container networks and microservice applications. The IOVisor [32]961
project maintains multiple eBPF-based subprojects such as gobpf [30], which allows interaction962
with the eBPF system using the Go language, ply [56] and bpftrace [16] for kernel introspection,963
in addition to BCC [7] and uBPF [65], discussed previously.964

9 LIMITATIONS AND WORKAROUNDS965

eBPF is a powerful technology for fast packet processing and kernel programmability. However,966
to execute inside the kernel, some restrictions are applied to eBPF programs to guarantee system967
stability and security. This section discusses some eBPF limitations and workarounds to overcome968
them. Some of the workarounds described here can be found on the XDP project development969
repository available in Reference [3].970

9.1 Subset of C Language Libraries971

eBPF uses a restricted number of C language libraries and does not support operations with exter-972
nal libraries. An alternative to overcome this limitation is to define and use auxiliary functions. For973
example, eBPF programs cannot use the printf function, because they run inside the kernel and974
this function is not implemented in the eBPF. However, they can use the bpf_trace_printk()975
helper function, which saves log messages generated by eBPF programs according to user-defined976
output in the kernel trace folder (/sys/kernel/debug/tracing/trace). By using the log gener-977
ated, the user can analyze and find possible errors in the execution of the eBPF program.978

9.2 Non-static Global Variables979

Currently, eBPF programs only support static global variables [13]. An alternative is to use the980
BPF_MAP_TYPE_PERCPU_ARRAY map. This map reserves a user-defined size non-shared memory981
space that can be used to store temporary data with a single entry during program execution [19].982

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

Fast Packet Processing with eBPF and XDP 16:31

9.3 Loops 983

The eBPF verifier did not allow loops to make sure all programs finish. The first technique adopted 984
to bypass this limitation was to use loop unrolling directives from the clang compiler to rewrite 985
a loop as a repeated sequence of independent instructions. This technique partially solves this 986
limitation, as it can only be used when the number of repetitions can be determined at compile 987
time. Besides that, it has a side effect of increasing the number of instructions in the final program. 988
The code snippet below demonstrates how to tell the compiler to unroll a for loop: 989

9.3.1 Bounded Loops. In kernel version 5.3 the use of unroll loop directives was replaced by 990
bounded loops. Since this release, the verifier does not reject all eBPF programs that contain loops 991
without first checking if loops finish within a timeout. Bounded loops were proposed by John 992
Fastabend and presented during the BPF Microconference at the 2018 Linux Plumbers Conference. 993
This technique allows using simple loops modeled through the verifier. It analyzes the behavior of 994
a loop through its induction variable and checks if memory accesses using the induction variable 995
belong to the range of memory addresses. Implementation details about bounded loops on the 996
verifier are available in Reference [27]. 997

9.4 Limited Stack Space 998

Local variables of a C program are stored in the stack after its translation to an eBPF program. As 999
the stack space is limited to only 512 bytes, it may be insufficient to store all the local variables 1000
of a program after its translation. The workaround adopted is the same used for global variables: 1001
to use the BPF_MAP_TYPE_PERCPU_ARRAY as an auxiliary buffer to store some local variables when 1002
the stack space is not enough [19]. 1003

9.5 Complex Applications 1004

Miano et al. [47] provide an in-depth discussion about the challenges faced when implementing 1005
complex network functions with eBPF. For example, applications that need to send the same packet 1006
to multiple interfaces (e.g., flood operation on a switch) are hard to implement, since the program 1007
would have to loop through all interfaces and copy the packet to each one of them. These are 1008
difficult tasks given the current available eBPF mechanisms. 1009

In addition, since eBPF programs are associated with hooks, they follow a passive event-based 1010
model. This makes it difficult to perform asynchronous tasks, such as active network measure- 1011
ments, which (currently) would have to be performed by a userspace application, for example. 1012

Moreover, the existing tools to implement a control plane for eBPF programs (e.g., libbpf and 1013
the bpf syscall) are very basic, mainly relying on map structures for data exchange. However, 1014
projects like Cilium and BCC represent progress in that respect. 1015

Finally, the maximum number of instructions of eBPF programs used to be limited to 4096, 1016
and this difficulted the development of complex network functions. One way to get around this 1017
limitation was to split a program into multiple subprograms and jump from one subprogram to 1018
another using the bpf_tail_call() helper function. This technique enables the development 1019
of network services as a collection of loosely coupled modules, where each module performs a 1020
different function (analysis, classification, or field modification), with low overhead when jumping 1021
from one module to another. However, the maximum number of nested tail calls allowed is 32. In 1022
April 2019, the maximum number of instructions was increased from 4096 to 1 million, allowing 1023
the execution of larger eBPF programs without requiring tail calls [1]. 1024

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

16:32 M. A. M. Vieira et al.

10 COMPARISON WITH SIMILAR TECHNOLOGIES1025

As shown throughout this work, eBPF is a powerful tool to add programmability to networking1026
platforms and an alternative to achieve fast packet processing on Linux environments through1027
the XDP hook. In this section, we discuss how eBPF fits into programmable and high-speed data1028
planes landscapes by comparing it with some widely used technologies: P4, Click, Netmap, and1029
Data Plane Development Kit (DPDK).1030

10.1 Programmable Data Planes1031

The P4 language [14] has been proposed to enable the definition of custom data planes for pro-1032
grammable switches. With widespread adoption, P4-enabled devices could compose a fully pro-1033
grammable core network, defining the functionality of both physical and virtual switches. On the1034
same front, BPFabric uses eBPF as its language to define the behavior of a programmable virtual1035
switch, applicable to virtualized environments or even server-centric networks.1036

However, the main strength of eBPF resides in its application to the edges of communication.1037
In the Linux kernel, it is capable of defining data plane functionalities at the communication end-1038
points, a different use case than the one P4 is designed for. Switching and routing are done by the1039
core network, covered by P4, but a significant portion of the network protocol stack is implemented1040
at the endpoints. With eBPF, this remaining part can be monitored, modified and reconfigured on1041
demand, making it an essential tool to provide full network programmability.1042

Click [37] also enables the creation of custom network elements to process packets inside the1043
Linux kernel. Applications can be created through the composition of many components, called1044
elements, which could also be implemented as C++ code using Click-specific function calls. The1045
definition of a Click application is done through a configuration file specifying the kinds of ele-1046
ments used and the interconnection between them, representing a packet processing graph. This1047
specification can then be compiled to userspace or kernel. Click kernel modules capture packets1048
close to the network device, and can pass them to the kernel stack using ToHost elements, similar to1049
what can be done in the XDP hook with eBPF. Li et al. [38] build upon Click to create the ClickNP1050
framework that enables the creation and execution of network functions on FPGAs, achieving1051
40 Gbps throughput for any packet size.1052

Although Click and ClickNP provide a broader set of pre-built primitives to create routers and1053
network functions, they do not offer the same level of integration with the kernel stack as eBPF.1054
The latter allows attaching programs to interact with several layers of the kernel stack, providing a1055
higher degree of control over the kernel’s packet processing mechanisms. However, Click could be1056
modified to take advantage of the eBPF/XDP infrastructure to be its basis to interact with packet1057
processing facilities, and possibly combine its expressiveness with eBPF’s performance and native1058
kernel integration.1059

10.2 High-speed Packet Processing1060

On high-speed networks with 10 Gbps links and beyond, inter-packet arrival times can get as1061
low as tens of nanoseconds, leaving very little time to process each packet. Due to this stringent1062
requirement, common system operations become too costly, such as context switches and inter-1063
rupt handling. Well-known technologies like DPDK [42] and NetMap [58] handle this problem by1064
operating in poll mode and bypassing the kernel altogether, performing all packet processing in1065
user space. By the use of specialized drivers, packets received by the NIC are sent directly to a1066
user space application, which will process them. In addition, the DPDK library and applications1067
built with it are usually optimized for aligned memory access, multi-core processing, non-uniform1068
memory access (NUMA) and other optimizations aimed to save precious CPU cycles.1069

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

Fast Packet Processing with eBPF and XDP 16:33

The eBPF system in the kernel provides good performance in a different manner: by allowing 1070
custom packet processing at the XDP hook, which is the lowest kernel layer. Through this hook, 1071
eBPF applications can parse, modify, collect statistics, and take action on incoming packets possibly 1072
without going through the OS’ network stack, forwarding packets directly back to the network. 1073
This way, context switches are avoided by embedding all network processing in the kernel. 1074

If compared to DPDK, then one of the advantages of the XDP hook is being able to use existing 1075
network facilities present in the kernel (ex: routing tables), which have to be re-implemented from 1076
the ground up when processing is done in user space, which is the case of DPDK. Also, since XDP 1077
is handled by the kernel, it can benefit from kernel API stability guarantees, from the separation 1078
mechanisms already in place to enforce security, integration with the existing stack without re- 1079
quiring re-injecting packets through an exception path. Device sharing is also facilitated, as the 1080
program does not need full-control over the NIC, which can remain visible to the OS. At the same 1081
time, programs are transparent to other applications on the host, since processing is hidden un- 1082
der the OS’ abstraction layers. In terms of resource usage, it avoids investing precious CPU cycles 1083
with busy-polling due to its event-based nature. Recent performance comparisons between the 1084
two technologies show that DPDK still reaches higher bandwidths (115 Mpps against 100 Mpps 1085
for XDP when dropping packets with five cores), but at the cost of a much higher CPU usage than 1086
XDP [31]. Finally, programs can be replaced atomically, providing greater flexibility for on-demand 1087
changes to packet processing. 1088

Thus, eBPF and DPDK provide different approaches to high-speed packet processing, both with 1089
their own set of restrictions and advantages, as discussed in this section and in Section 9. The best 1090
choice of technology may depend on the actual use case, although integration of both could be 1091
achieved by using AF_XDP sockets and the corresponding poll mode driver on DPDK [22] or the 1092
librte_bpf library provided by DPDK to add an eBPF VM directly to DPDK applications [23]. 1093

11 CONCLUSION 1094

In this work, we presented a vision of the theoretical and practical aspects related to fast packet 1095
processing with eBPF and XDP. In the theoretical part, we discussed the BPF and eBPF machines, 1096
an overview of the eBPF system provided by the Linux kernel, the available hooks and some results 1097
of recent research. In the practical part, we focused on eBPF and the XDP hook, providing examples 1098
and showing existing tools. 1099

Given their power for fast packet processing, we consider that there is great potential in the 1100
development of new research projects with eBPF and XDP, either as a tool for the development of 1101
new network functions, or allowing to provide new functionalities in the data plane, such as the 1102
creation of new communication standards and protocols, or in the development of new research 1103
prototypes and network solutions. Together, eBPF and XDP will help develop new interesting 1104
research with great potential in the area of Computer Networking. 1105

REFERENCES

[1] 2019. bpf: Increase Complexity Limit and Maximum Program Size. Retrieved from https://git.kernel.org/pub/scm/ 1106
linux/kernel/git/davem/net-next.git/commit/?id=c04c0d2b968ac45d6ef020316808ef6c82325a82. 1107

[2] 2019. libbpf Unification and Golang Bindings. Discussion Summary, Linux Kernel Developers’ bpfconf 2019. Retrieved 1108
from http://vger.kernel.org/bpfconf2019.html#session-4. 1109

[3] 2019. XDP Project Repository. Retrieved from https://github.com/xdp-project/xdp-project.Q1 1110
[4] Ahmed Abdelsalam, Francois Clad, Clarence Filsfils, Stefano Salsano, Giuseppe Siracusano, and Luca Veltri. 2017. 1111

Implementation of virtual network function chaining through segment routing in a linux-based NFV infrastructure. 1112
In Proceedings of the 2017 IEEE Conference on Network Softwarization: Softwarization Sustaining a Hyper-Connected 1113
World: en Route to 5G (NetSoft’17). IEEE, Los Alamitos, CA, 1–5. DOI:https://doi.org/10.1109/NETSOFT.2017.8004208 1114
arXiv:1702.05157 1115

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/commit/?id=c04c0d2b968ac45d6ef020316808ef6c82325a82
https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/commit/?id=c04c0d2b968ac45d6ef020316808ef6c82325a82
http://vger.kernel.org/bpfconf2019.html#session-4
https://github.com/xdp-project/xdp-project
https://doi.org/10.1109/NETSOFT.2017.8004208

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

16:34 M. A. M. Vieira et al.

[5] Zaafar Ahmed, Muhammad Hamad Alizai, and Affan A. Syed. 2018. InKeV: In-kernel distributed network virtual-1116
ization for DCN. SIGCOMM Comput. Commun. Rev. 46, 3, Article 4 (Jul. 2018), 6 pages. DOI:https://doi.org/10.1145/1117
3243157.32431611118

[6] S. Baidya, Y. Chen, and M. Levorato. 2018. eBPF-based content and computation-aware communication for real-timeQ21119
edge computing. In Proceedings of the INFOCOM IEEE Conference on Computer Communications Workshops (INFOCOM1120
WORKSHOPS’18). IEEE, Los Alamitos, CA, 865–870. DOI:https://doi.org/10.1109/INFCOMW.2018.84070061121

[7] BCC. 2019. BPF Compiler Collection. Retrieved from https://github.com/iovisor/bcc.1122
[8] BCC. 2019. BPF Program Types. Retrieved from https://github.com/iovisor/bcc/blob/master/docs/kernel-versions.1123

md#program-types.1124
[9] BCC. 2019. XDP Compatible Drivers. Retrieved from https://github.com/iovisor/bcc/blob/master/docs/1125

kernel-versions.md#xdp.1126
[10] David Beckett, Jaco Joubert, and Simon Horman. 2018. Host Dataplane Acceleration (HDA).Q31127
[11] Gilberto Bertin. 2017. XDP in practice: Integrating XDP into our DDoS mitigation pipeline. In Proceedings of the1128

Netdev 2.1 Technical Conference on Linux Networking. 1–5.1129
[12] Matteo Bertrone, Sebastiano Miano, Fulvio Risso, and Massimo Tumolo. 2018. Accelerating linux security with eBPF1130

iptables. In Proceedings of the ACM SIGCOMM 2018 Conference on Posters and Demos (SIGCOMM’18). ACM, New York,1131
NY, 108–110. DOI:https://doi.org/10.1145/3234200.32342281132

[13] Daniel Borkmann. 2019. bpf, Libbpf: Support Global Data/bss/rodata Sections. Retrieved from https://git.kernel.org/1133
pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d859900c4c56.1134

[14] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford, Cole Schlesinger, Dan Talayco,1135
Amin Vahdat, George Varghese, and David Walker. 2014. P4: Programming protocol-independent packet processors.1136
SIGCOMM Comput. Commun. Rev. 44, 3 (Jul. 2014), 87–95. DOI:https://doi.org/10.1145/2656877.26568901137

[15] Autores bpftool. 2018. Manual Bpftool. Retrieved from https://elixir.bootlin.com/linux/v4.18-rc1/ source/tools/bpf/1138
bpftool/Documentation/bpftool.rst.1139

[16] bpftrace. 2019. High-level Tracing Language for Linux eBPF. Retrieved from https://github.com/iovisor/bpftrace.1140
[17] Mihai Budiu. 2015. Compiling p4 to ebpf. Retrieved from https://github.com/iovisor/bcc/tree/master/src/cc/frontends/1141

p4.1142
[18] Cilium. 2018. Cilium 1.0: Bringing the BPF Revolution to Kubernetes Networking and Security. Retrieved from1143

https://cilium.io/blog/2018/04/24/cilium-10/.1144
[19] Cilium. 2019. BPF and XDP Reference Guide. Retrieved September 9, 2019 from https://cilium.readthedocs.io/en/1145

latest/bpf/.1146
[20] Cilium. 2019. Cilium: API-aware Networking and Security. Retrieved September 9, 2019 from https://cilium.io/.1147
[21] Jonathan Corbet. 2014. BPF: The Universal In-kernel Virtual Machine. Retrieved from https://lwn.net/Articles/1148

599755/.1149
[22] DPDK. 2019. AF_XDP Poll Mode Driver. Retrieved from https://doc.dpdk.org/guides/nics/af_xdp.html.1150
[23] DPDK. 2019. Berkeley Packet Filter Library. Retrieved from https://doc.dpdk.org/guides/prog_guide/bpf_lib.html.1151
[24] Fabien Duchene, Mathieu Jadin, and Olivier Bonaventure. 2018. Exploring various use cases for IPv6 segment routing.1152

In Proceedings of the ACM SIGCOMM 2018 Conference on Posters and Demos (SIGCOMM’18). ACM, New York, NY, 129–1153
131. DOI:https://doi.org/10.1145/3234200.32342131154

[25] Eric Dumazet. 2011. A JIT for Packet Filters. Retrieved from https://lwn.net/Articles/437981/.1155
[26] Facebook. 2018. Katran Source Code Repository. Retrieved from https://github.com/facebookincubator/katran.1156
[27] John Fastabend. 2018. [RFC PATCH 00/16] bpf, Bounded Loop Support Work in Progress. Retrieved from https://lwn.1157

net/ml/netdev/20180601092646.15353.28269.stgit@john-Precision-Tower-5810/.1158
[28] Nick Feamster, Jennifer Rexford, and Ellen Zegura. 2014. The road to SDN: An intellectual history of programmable1159

networks. ACM SIGCOMM Comput. Commun. Rev. 44, 2 (2014), 87–98.1160
[29] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski, and R. Shakir. 2018. Segment Routing Architecture. RFC1161

8402. RFC Editor.1162
[30] gobpf. 2019. Go Bindings for Creating BPF Programs. Retrieved from https://github.com/iovisor/gobpf.1163
[31] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann, John Fastabend, Tom Herbert, David Ahern, and1164

David Miller. 2018. The eXpress data path: Fast programmable packet processing in the operating system kernel. In1165
Proceedings of the 14th International Conference on Emerging Networking EXperiments and Technologies (CoNEXT’18).1166
ACM, New York, NY, 54–66. DOI:https://doi.org/10.1145/3281411.32814431167

[32] IOvisor. 2019. Iovisor Project. Retrieved March 29, 2019 from www.iovisor.org.1168
[33] S. Jouet, R. Cziva, and D. P. Pezaros. 2015. Arbitrary packet matching in OpenFlow. In Proceedings of the 16th Inter-1169

national Conference on High Performance Switching and Routing (HPSR’15). IEEE, Los Alamitos, CA, 1–6. DOI:https://1170
doi.org/10.1109/HPSR.2015.74831061171

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

https://doi.org/10.1145/3243157.3243161
https://doi.org/10.1145/3243157.3243161
https://doi.org/10.1109/INFCOMW.2018.8407006
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc/blob/master/docs/kernel-versions.md#program-types
https://github.com/iovisor/bcc/blob/master/docs/kernel-versions.md#program-types
https://github.com/iovisor/bcc/blob/master/docs/kernel-versions.md#xdp
https://github.com/iovisor/bcc/blob/master/docs/kernel-versions.md#xdp
https://doi.org/10.1145/3234200.3234228
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d859900c4c56
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d859900c4c56
https://doi.org/10.1145/2656877.2656890
https://elixir.bootlin.com/linux/v4.18-rc1/ ignorespaces source/tools/bpf/bpftool/Documentation/bpftool.rst
https://elixir.bootlin.com/linux/v4.18-rc1/ ignorespaces source/tools/bpf/bpftool/Documentation/bpftool.rst
https://github.com/iovisor/bpftrace
https://github.com/iovisor/bcc/tree/master/src/cc/frontends/p4
https://github.com/iovisor/bcc/tree/master/src/cc/frontends/p4
https://cilium.io/blog/2018/04/24/cilium-10/
https://cilium.readthedocs.io/en/latest/bpf/
https://cilium.readthedocs.io/en/latest/bpf/
https://cilium.io/
https://lwn.net/Articles/599755/
https://lwn.net/Articles/599755/
https://doc.dpdk.org/guides/nics/af_xdp.html
https://doc.dpdk.org/guides/prog_guide/bpf_lib.html
https://doi.org/10.1145/3234200.3234213
https://lwn.net/Articles/437981/
https://github.com/facebookincubator/katran
https://lwn.net/ml/netdev/20180601092646.15353.28269.stgit@john-Precision-Tower-5810/
https://lwn.net/ml/netdev/20180601092646.15353.28269.stgit@john-Precision-Tower-5810/
https://github.com/iovisor/gobpf
https://doi.org/10.1145/3281411.3281443
https://www.iovisor.org
https://doi.org/10.1109/HPSR.2015.7483106
https://doi.org/10.1109/HPSR.2015.7483106

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

Fast Packet Processing with eBPF and XDP 16:35

[34] Simon Jouet and Dimitrios P. Pezaros. 2017. BPFabric: Data plane programmability for software defined networks. 1172
In Proceedings of the Symposium on Architectures for Networking and Communications Systems (ANCS’17). IEEE Press, 1173
Piscataway, NJ, 38–48. DOI:https://doi.org/10.1109/ANCS.2017.14 1174

[35] Michael Kerrisk. 2013. BFPC 8 Linux Manual Page. Retrieved June 8, 2019 from http://man7.org/linux/man-pages/ 1175
man8/bpfc.8.html. 1176

[36] Jason Koch, Martin Spier, Brendan Gregg, and Ed Hunter. 2019. Extending Vector with eBPF to Inspect Host and Con- 1177
tainer Performance. Retrieved from https://medium.com/netflix-techblog/extending-vector-with-ebpf-to-inspect- 1178
host-and-container-performance-5da3af4c584b. 1179

[37] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek. 2000. The click modular router. 1180
ACM Trans. Comput. Syst. 18, 3 (2000), 263–297. 1181

[38] Bojie Li, Kun Tan, Layong (Larry) Luo, Yanqing Peng, Renqian Luo, Ningyi Xu, Yongqiang Xiong, Peng Cheng, and 1182
Enhong Chen. 2016. ClickNP: Highly flexible and high performance network processing with reconfigurable hard- 1183
ware. In Proceedings of the 2016 ACM SIGCOMM Conference (SIGCOMM’16). ACM, New York, NY, 1–14. DOI:https:// 1184
doi.org/10.1145/2934872.2934897 1185

[39] libbpf. 2018. Libbpf Source Code. Retrieved from https://elixir.bootlin.com/linux/v4. 18-rc1/source/tools/lib/bpf. 1186
[40] libbpf. 2019. Stand-alone Libbpf. Retrieved from https://github.com/libbpf/libbpf. 1187
[41] Linux. 2017. Net: Xdp: Support Xdp Generic on Virtual Devices. Retrieved from https://git.kernel.org/pub/scm/linux/ 1188

kernel/git/torvalds/linux.git/commit/?id=d445516966dcb2924741b13b27738b54df2af01a. 1189
[42] Linux Foundation. 2015. Data Plane Development Kit (DPDK). Retrieved from http://www.dpdk.org. 1190
[43] D. F. Macedo, D. Guedes, L. F. M. Vieira, M. A. M. Vieira, and M. Nogueira. 2015. Programmable networks: From 1191

software-defined radio to software-defined networking. IEEE Commun. Surv. Tutor. 17, 2 (2015), 1102–1125. DOI: 1192
https://doi.org/10.1109/COMST.2015.2402617 1193

[44] Alan Maguire. 2019. Notes on BPF (1)—A Tour of Program Types. Retrieved from https://blogs.oracle.com/linux/ 1194
notes-on-bpf-1. 1195

[45] Marek Majkowski. 2019. Cloudflare Architecture and How BPF Eats the World. Retrieved from https://blog.cloudflare. 1196
com/cloudflare-architecture-and-how-bpf-eats-the-world/. 1197

[46] Steven McCanne and Van Jacobson. 1993. The BSD packet filter: A new architecture for user-level packet capture. 1198
In Proceedings of the USENIX Winter 1993 Conference Proceedings on USENIX Winter 1993 Conference Proceedings 1199
(USENIX’93). USENIX Association, Berkeley, CA, 1–11. 1200

[47] Sebastiano Miano, Matteo Bertrone, Fulvio Risso, Massimo Tumolo, and Mauricio Vásquez Bernal. 2018. Creating 1201
complex network service with ebpf: Experience and lessons learned. In Proceedings of the High Performance Switching 1202
and Routing (HPSR’18). IEEE, Los Alamitos, CA, 1–8. 1203

[48] Rashid Mijumbi, Joan Serrat, Juan Luis Gorricho, Niels Bouten, Filip De Turck, and Raouf Boutaba. 2016. Network 1204
function virtualization: State-of-the-art and research challenges. IEEE Communi. Surv. Tutor. 18, 1 (2016), 236–262. 1205

[49] David Miller. 2017. BPF Verifier Overview. Retrieved April 9, 2019 from https://lwn.net/Articles/794934/. 1206
[50] J. Mogul, R. Rashid, and M. Accetta. 1987. The packer filter: An efficient mechanism for user-level network code. 1207

In Proceedings of the 11th ACM Symposium on Operating Systems Principles (SOSP’87). ACM, New York, NY, 39–51. 1208
DOI:https://doi.org/10.1145/41457.37505 1209

[51] Quentin Monnet. 2019. All-Out Programmability in Linux: An Introduction to BPF as a Monitoring Tool. Retrieved 1210
April 9, 2019 from https://qmo.fr/docs/talk_20190516_allout_programmability_bpf.pdf. 1211

[52] Quentin Monnet. 2019. Rust Virtual Machine and JIT Compiler for eBPF Programs. Retrieved from https://github. 1212
com/qmonnet/rbpf. 1213

[53] Netronome. 2019. Sample BPF Offload Apps. Retrieved from https://github.com/Netronome/bpf-samples. 1214
[54] PLUMgrid. 2016. Linux Kernel Source Code. Retrieved June 7, 2019 from https://github.com/torvalds/linux/blob/v5. 1215

3/samples/bpf/xdp1_kern.c. 1216
[55] PLUMgrid. 2016. Linux Kernel Source Code. Retrieved June 7, 2019 from https://github.com/torvalds/linux/blob/v5. 1217

3/samples/bpf/xdp1_user.c. 1218
[56] ply. 2019. Dynamic Tracing in Linux. Retrieved from https://github.com/iovisor/ply. 1219
[57] Alex Pollitt. 2019. Tigera adds eBPF Support to Calico. Retrieved September 9, 2019 from https://www.projectcalico. 1220

org/tigera-adds-ebpf-support-to-calico/. 1221
[58] Luigi Rizzo. 2012. netmap: A novel framework for fast packet I/O. In Proceedings of the 2012 USENIX Annual Technical 1222

Conference (USENIX ATC’12). USENIX Association, Berkeley, CA, 101–112. https://www.usenix.org/conference/atc12/ 1223
technical-sessions/presentation/rizzo 1224

[59] Marta Rybczyńska. 2019. Bounded Loops in BPF for the 5.3 Kernel. Retrieved April 9, 2019 from https://www.spinics. 1225
net/lists/xdp-newbies/msg00185.html. 1226

[60] Jay Schulist, Daniel Borkmann, and Alexei Starovoitov. 2019. Linux Socket Filtering aka Berkeley Packet Filter (BPF). 1227
Retrieved March 17, 2019 from www.kernel.org/doc/Documentation/networking/filter.txt. 1228

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

https://doi.org/10.1109/ANCS.2017.14
http://man7.org/linux/man-pages/man8/bpfc.8.html
http://man7.org/linux/man-pages/man8/bpfc.8.html
https://medium.com/netflix-techblog/extending-vector-with-ebpf-to-inspect-host-and-container-performance-5da3af4c584b
https://medium.com/netflix-techblog/extending-vector-with-ebpf-to-inspect-host-and-container-performance-5da3af4c584b
https://doi.org/10.1145/2934872.2934897
https://doi.org/10.1145/2934872.2934897
https://elixir.bootlin.com/linux/v4. ignorespaces 18-rc1/source/tools/lib/bpf
https://github.com/libbpf/libbpf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id$=$d445516966dcb2924741b13b27738b54df2af01a
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id$=$d445516966dcb2924741b13b27738b54df2af01a
http://www.dpdk.org
https://doi.org/10.1109/COMST.2015.2402617
https://blogs.oracle.com/linux/notes-on-bpf-1
https://blogs.oracle.com/linux/notes-on-bpf-1
https://blog.cloudflare.com/cloudflare-architecture-and-how-bpf-eats-the-world/
https://blog.cloudflare.com/cloudflare-architecture-and-how-bpf-eats-the-world/
https://lwn.net/Articles/794934/
https://doi.org/10.1145/41457.37505
https://qmo.fr/docs/talk_20190516_allout_programmability_bpf.pdf
https://github.com/qmonnet/rbpf
https://github.com/qmonnet/rbpf
https://github.com/Netronome/bpf-samples
https://github.com/torvalds/linux/blob/v5.3/samples/bpf/xdp1_kern.c
https://github.com/torvalds/linux/blob/v5.3/samples/bpf/xdp1_kern.c
https://github.com/torvalds/linux/blob/v5.3/samples/bpf/xdp1_user.c
https://github.com/torvalds/linux/blob/v5.3/samples/bpf/xdp1_user.c
https://github.com/iovisor/ply
https://www.projectcalico.org/tigera-adds-ebpf-support-to-calico/
https://www.projectcalico.org/tigera-adds-ebpf-support-to-calico/
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo
https://www.spinics.net/lists/xdp-newbies/msg00185.html
https://www.spinics.net/lists/xdp-newbies/msg00185.html
https://www.kernel.org/doc/Documentation/networking/filter.txt

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

16:36 M. A. M. Vieira et al.

[61] Haoyu Song. 2013. Protocol-oblivious forwarding: Unleash the power of SDN through a future-proof forward-1229
ing plane. In Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking1230
(HotSDN’13). ACM, New York, NY, 127–132. DOI:https://doi.org/10.1145/2491185.24911901231

[62] Alexei Starovoitov. 2015. bpf: Introduce bpf_tail_call() Helper. Retrieved from https://lwn.net/Articles/645169/.1232
[63] Alexei Starovoitov. 2018. Lifetime of BPF Objects. Retrieved from https://facebookmicrosites.github.io/bpf/blog/2018/1233

08/31/object-lifetime.html.1234
[64] Cheng-Chun Tu, Joe Stringer, and Justin Pettit. 2017. Building an extensible open vSwitch datapath. SIGOPS Oper.1235

Syst. Rev. 51, 1 (Sep. 2017), 72–77. DOI:https://doi.org/10.1145/3139645.31396571236
[65] uBPF. 2019. Userspace eBPF VM. Retrieved from https://github.com/iovisor/ubpf.1237
[66] Marcos A. M. Vieira, Matheus S. Castanho, Racyus D. G. Pacífico, Elerson R. S. Santos, Eduardo P. M. Câmara1238

Júnior, and Luiz F. M. Vieira. 2019. Zenodo—eBPF Tutorial. Retrieved from https://zenodo.org/record/3519347#.1239
XbMxR6zMNhE.1240

[67] Marcos A. M. Vieira, Matheus S. Castanho, Racyus D. G. Pacífico, Elerson R. S. Santos, Eduardo P. M. Câmara Júnior,1241
and Luiz F. M. Vieira. 2019. eBPF Tutorial. Retrieved from https://github.com/racyusdelanoo/bpf-tutorial.1242

[68] VMWare. 2018. p4c-xdp. Retrieved from https://github.com/vmware/p4c-xdp.1243
[69] WeaveWorks. 2017. Improving Performance and Reliability in Weave Scope with eBPF. Retrieved from https://www.1244

weave.works/blog/improving-performance-reliability-weave-scope-ebpf/.1245
[70] XDP-Project. 2019. AXDP Hands-On Tutorial. Retrieved August 20, 2019 from https://github.com/xdp-project/1246

xdp-tutorial.1247

Received June 2019; revised October 2019; accepted October 20191248

ACM Computing Surveys, Vol. 53, No. 1, Article 16. Publication date: December 2019.

https://doi.org/10.1145/2491185.2491190
https://lwn.net/Articles/645169/
https://facebookmicrosites.github.io/bpf/blog/2018/08/31/object-lifetime.html
https://facebookmicrosites.github.io/bpf/blog/2018/08/31/object-lifetime.html
https://doi.org/10.1145/3139645.3139657
https://github.com/iovisor/ubpf
https://zenodo.org/record/3519347#.XbMxR6zMNhE
https://zenodo.org/record/3519347#.XbMxR6zMNhE
https://github.com/racyusdelanoo/bpf-tutorial
https://github.com/vmware/p4c-xdp
https://www.weave.works/blog/improving-performance-reliability-weave-scope-ebpf/
https://www.weave.works/blog/improving-performance-reliability-weave-scope-ebpf/
https://github.com/xdp-project/xdp-tutorial
https://github.com/xdp-project/xdp-tutorial

CSUR5301-16 ACMJATS Trim: 6.75 X 10 in December 27, 2019 13:8

Author Queries

Q1: AU: Refs 1-3: Please provide authors for all refs.

Q2: AU: Please verify Retrieved from dates; the style changes throughout the list.

Q3: AU: Ref. 10: Please update and complete.

