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Abstract—Network Function Virtualization (NFV) decouples
network functions from dedicated, proprietary hardware into
software Virtual Network Functions (VNFs) that can run on
standard, commodity servers. One challenge of NFV is to provide
high-throughput and low-latency network services. In this paper,
we propose eVNF - a hybrid architecture to build and accelerate
VNFs with eXpress Data Path (XDP). XDP is a Linux kernel
framework that enables high-performance and programmable
network processing. However, the programmability of XDP is
limited to ensure kernel safety, thus causing difficulties in
applying XDP to NFV. eVNF solves this problem by taking a
hybrid approach: leave the simple but critical tasks inside the
kernel with XDP, and let complex tasks be processed outside
XDP, e.g., in user-space. With the hybrid architecture, eVNF
allows building fast and flexible VNFs. We used eVNF to build
three prototype VNFs: Firewall (eFW), Deep Packet Inspection
(eDPI), and Load Balancer (eLB). We evaluated these VNFs in
two service function chains using OpenStack. Our experiments
showed that eVNF can significantly improve service throughput
as well as reduce latency and CPU usage.

Keywords—Network Function Virtualization, eBPF, eXpress
Data Path, OpenStack, Firewall, Deep Packet Inspection, Load
Balancer

I. INTRODUCTION

A common network infrastructure consists of many com-
ponents called network functions (NFs), such as Routers,
Firewalls, Deep Packet Inspection (DPI), Intrusion Detection
Systems (IDS), Load Balancers, Network Address Translation
(NAT), etc. In legacy networks, network service providers
deploy these NFs as physical network appliance per each func-
tion with tightly coupled, dedicated and proprietary hardware-
software. This leads to several problems: a high cost to buy,
upgrade and maintain network infrastructure; dependency on
the hardware vendors; and difficulties to quickly cope with fast
changes on network services nowadays. The consequences are
high capital expenditures (CAPEX), high operational expen-
ditures (OPEX), and profit reduction for the network service
providers.

Network Function Virtualization (NFV) [1] has been pro-
posed as a solution to solve these problems. NFV decouples
NFs from their dedicated hardware into software Virtual
Network Functions (VNFs) and enables VNFs to run on
commodity servers. By moving NFs into software that can
run on any standard hardware, NFV brings several advantages:
reducing the dependency on proprietary hardware for network
service providers and operators; optimizing space for deploy-

ment of the physical network equipment and reduce network
power consumption; and enabling flexibility in deployment
and management, which allows network operators to get
network upgrades and cope with changes in network service
demands easier. As a result, NFV helps service providers to
reduce both CAPEX and OPEX.

In many cases, a VNF is a piece of software that runs on top
of the Linux kernel and kernel networking stack. In the context
of this paper, we call this VNF a traditional (or legacy) VNF.
The performance of legacy VNFs may be degraded compared
to hardware NFs, considering that the generic Linux kernel
networking stack does not target very-high performance tasks.
In recent years, a kernel framework called extended Berkeley
Packet Filter (eBPF) [2] has been developed, which allows
injecting a small program into the kernel and process packets
at the low level of the kernel networking stack, thus allowing
high-throughput and low-latency packet processing. eXpress
Data Path (XDP) [3] is a special type of eBPF program that
processes packets at the lowest level of the networking stack
and provides even better efficiency. Nevertheless, to ensure the
stability and security of the kernel, the flexibility of eBPF/XDP
is strictly limited compared to generic software programs.
Consequently, building general VNFs with eBPF/XDP is still
a challenge.

To address the above problem, we propose eVNF - a hybrid
architecture to build and accelerate VNFs with XDP. Our
contributions are:

• We propose eVNF - a hybrid architecture to build high-
throughput and low-latency VNFs with XDP. eVNF parti-
tions the task of a VNF into two parts: simple but critical
tasks are processed in an XDP program, while the other
complex tasks are processed outside of the XDP program
(in a kernel module or a user-space program). We will
discuss in detail various aspects of the architecture in
this paper.

• To prove the feasibility of eVNF, we use it to implement
three widely-used VNFs: Firewall (eFW), Deep Packet
Inspection (eDPI), and Load Balancer (eLB). We chained
these VNFs in two SFCs using OpenStack and evaluated
them with respect to three aspects: throughput, latency,
CPU usage. Our evaluation results showed that eVNF can
significantly and simultaneously increase throughput, re-
duce latency and CPU usage of VNFs. We also evaluated
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the effect of using Data Plane Development Kit (DPDK)
for inter-VNF networking and combining multiple VNFs
in one VM.

This paper extends our recent work [4] in several aspects.
Firstly, while [4] only considers one VNF in each VM, this
work considers how to apply eVNF in the case of using mul-
tiple VNFs in one VM, which can provide better throughput
and latency as well as resource usage efficiency. Secondly,
we compare the performance of eVNF when using and when
not using acceleration method for inter-VMs networking, such
as DPDK. In both cases, eVNF significantly improve the
throughput and latency. Thirdly, we discuss the scalability of
eVNF. Finally, we compare our approach with OpenFlow [5];
they look similar that the first glance, but have fundamental
differences.

The remainder of this paper is organized as follows. In
Section II, we present background and related work. eVNF
architecture is described in detail in Section III. In Section
IV, we present eFW, eDPI, and eLB as prototype VNFs
using eVNF architecture. Experiment and evaluation are given
in Section V. Finally, Section VI concludes this paper and
discusses our future work.

II. BACKGROUND AND RELATED WORK

A. Acceleration methods for NFV

There are several methods to improve NFV throughput and
latency. The first method is using highly-optimized system-
wide NFV frameworks, such as E2 [6] and NetBricks [7].
With the observation that a VNF usually needs to parse the
packet structure first when a packet enters the VNF, E2 uses a
dedicated block to parse the packet structure only once, then
passes the parsed information as metadata to the next VNFs.
NetBricks accelerates NFV by removing the cost of VM
virtualization and uses compile-time and run-time checking
to ensure VNF isolation instead. Both E2 and NetBricks use
zero-copy to further accelerate packet I/O. They also have their
own management systems to manage and optimize the VNF
chaining process. E2 and NetBricks are complete NFV MANO
systems with their own APIs to build VNFs, hence they are
not compatible with other NFV MANOs such as OpenStack.
In contrast, VNFs built using eVNF architecture should be
able to work with any generic VM-based MANO systems.

The second method is to offload VNFs or parts of VNFs to
dedicated hardware. NBA [8] and GPUNFV [9] can use GPU
to accelerate packet processing. ClickNP [10] and HYPER
[11] can offload packet processing into Field Programmable
Gate Arrays (FPGAs). UNO [12] can offload packet pro-
cessing into smart NICs. While our work does not exploit
and hardware offloading feature yet, it has been shown that
eBPF/XDP programs can be offloaded into smart NICs for
throughput improvement [13]. The third method is using a
framework for high-performance packet processing, which is
covered in the next subsection.

B. Software frameworks for packet processing

Generally, a VNF is built as software that runs on top of the
Linux kernel with generic networking stack (Fig. 1). The VNF
then can be put in a physical host, a Virtual Machine (VM), or
a container. The Linux kernel network stack is programmed for
general usage, hence it is complex and has many processing
layers. Also, if the VNF runs in user-space, there is a high cost
to pass packets from the kernel space to the VNF (kernel-
user space context switching). As a result, for the high-rate
packet processing tasks, the cost to bring the packet from the
Network Interface Card (NIC) to the VNF becomes significant.
To solve this problem, there are two methods: putting the VNF
at the low-level of networking stack inside the kernel, or using
kernel-bypass to bring packets directly from NIC to the VNF.
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eBPF/XDP are in-kernel packet processing software frame-
works (Fig. 1). eBPF allows injecting a custom program into
the kernel as a small in-kernel virtual machine. This program
will run when a specific kernel event is activated (such as
packet sent or received). In networking, eBPF allows packet
processing at low-level of the kernel networking stack (kernel
Tun-Tap, Traffic Control, or Socket layer), avoiding the penalty
of kernel networking stack traversal and kernel-user space
switching, thus can accelerate packet processing. XDP is a
special type of eBPF program that provides access to the
lowest layer of the kernel network stack (at NIC ring in the
driver layer), which allows even higher performance. eBPF is
integrated into Linux kernel from v3.15, XDP is integrated
into the kernel from v4.8.

DPDK [14] is a popular kernel-bypass packet processing
framework (Fig. 1). Currently, DPDK performs better than
XDP in packet processing [3]. However, when it comes to
NFV, DPDK has limitations. DPDK requires a dedicated CPU
core for polling packets. This could be beneficial when the
polling CPU serves a networking infrastructure with multiple
VMs, but could be overkill when the polling CPU only serves
one VNF VM. Each VM using DPDK needs at least one vCPU



for DPDK packet polling, so when the number of VNF VMs
increases, the number of DPDK-dedicated vCPUs for packet
polling is increased. DPDK also requires dedicated huge-
page memory for packet polling, thus the amount of DPDK-
dedicated RAM also becomes large when the number of VNF
VMs increases. XDP does not have these two limitations. Also,
DPDK is a kernel-bypass framework, hence it comes with a
high cost to re-inject packets to the kernel when necessary.
XDP can pass packets to the kernel networking stack with a
nearly-zero performance hit instead, hence can easily leverage
traditional VNFs built on the generic networking stack.

C. eBPF/XDP limitations

Although eBPF/XDP enables in-kernel network pro-
grammability, its flexibility and capability are limited to ensure
the stability and security of the kernel [15]. The size of
an eBPF/XDP program is limited, the allowed programming
language is only a small subset of C. More importantly,
an eBPF/XDP program is very restricted from using kernel
services. Only a small number of helper functions is provided,
and no user space or third-party service can be used.

D. Related work on eBPF/XDP

In networking, eBPF/XDP can be used to accelerate network
infrastructure [16, 17, 18]. BPFabric [16] proposes an in-kernel
programmable network data plane with eBPF that targets to
replace traditional data planes such as Open vSwitch. As a
side work, it also demonstrates that some light-weight VNFs
can be programmed with eBPF (such as network telemetry and
lightweight anomaly detection). However, BPFabric does not
consider the eBPF limitation and does not explain how to build
more complex VNFs. IOVisor-OVN [18] is another work that
tries to replace the OvS back-end with eBPF/XDP. Cilium [17]
uses eBPF/XDP to implement the networking infrastructure
for containers. While also using eBPF/XDP, IOVisor-OVN
and Cilium are orthogonal to our work. IOVisor-OVN and
Clilium are for VM-VM and container-container networking,
respectively; eVNF is for building high-performance VNFs.

Recently, there are several efforts that take advantage of
XDP to implement specific VNFs such as Firewall [19, 20],
DDoS Protection [21] and Load Balancer [22] with greater
performance compared to traditional solutions. However, these
works focus on specific VNFs and do not provide a general
architecture for using XDP in various VNFs. They also do not
evaluate their XDP-based VNFs in SFCs.

III. eVNF ARCHITECTURE

To tackle the XDP constraints and build fast and flexible
VNFs, we propose an architecture for VNF based on XDP
using a hybrid approach, called eVNF (Fig. 2). In its basic
form, a hybrid VNF is divided into two parts: the low-layer
part, which is an XDP program in kernel space; and the upper-
layer part, which can be a kernel module or a user space
program. We call the low-layer part the fast path, and the
upper-layer part the slow path. The fast path can process

packets with high performance, but it has the limitations of
an XDP program. The slow path offers lower performance
than the fast path but does not have XDP’s limitations. The
fast path XDP program is attached to a network interface that
receives packets and is be executed when packets are received.
When a packet comes in, it is first processed by the fast path.
If there is no indication (rule) of how to process the packet in
the fast path, the packet is passed to the slow path for further
processing. The slow path program then processes the packet
and installs a rule to the fast path so that the next packets
can be processed directly in the fast path to avoid the cost
of kernel-user space switching and kernel networking stack
traversal.
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Fig. 2. eVNF Architecture

A. Fast path processing flow

Packet Parser: Firstly, packets which pass through a net-
work interface are filtered in the Parser block. This block has
two missions: parsing and filtering. Parser filters packets to be
sent and not to be sent to the next processing step. If a packet
passes the filter, the packet structure and other data can be
used in the next step.

The parsing sequence goes sequentially from the lowest
layer (Ethernet frame) to the highest layer that is required
by the VNF (IP, TCP/UDP or application layer). To achieve
optimal efficiency, Parser should only parse a packet up to
the required layer and should terminate the XDP program
immediately if the packet does not match the filter.

Packet Processor: This block does the main packet pro-
cessing in the XDP fast path program. It contains (possibly
multiple) Matcher(s) and Action(s).

With Matcher, the processing decision is decided by the
match/action method: the packet metadata (extracted from
parsed data and other stateful data) is used as a key to find the
equivalent entry in the Matcher. A Matcher is an eBPF table
which stores key-value entries.



If there is a matched entry, the packet will be processed by
the Action with the custom parameters provided by the value
field. If there is no match, the packet will be sent to the slow
path. There are two ways to send a packet to the slow path:

• Pass the packet to the kernel stack. The slow path
program can then receive and process the packet.

• Redirect the packet to an exclusive virtual network inter-
face (e.g., TAP interface). The slow path listens on this
interface to get the packet. This method can be used if
the slow path requires a specific interface and does not
want to receive packets from other programs.

Also, in many cases, we may need to send custom infor-
mation to the slow path to aid the processing. In these cases,
eBPF provides a special mechanism to push data to the slow
path, called perf event. The slow path should continuously
poll events from the fast path.

The Action should do the simple but critical tasks that
should be applied to all packets that match a rule in the
Matcher. What tasks need to be done here depend on each
specific VNF and how the fast path and slow path are defined.
For example, in our eLB, Packet Processor uses the lookup
result from the Matcher to select the next server, modifies
destination IP and recalculates checksums. Packet Processor
can also utilize eBPF tables to store stateful data. Those data
can be accessed from both the slow path and the fast path.

Forwarder: If the packet passes the Packet Processor,
Forwarder modifies the MAC source and destination, then
forward the packet to the next node via a designated interface.
Forwarder might have an ARP-like table (which is an eBPF
table) to look up the destination MAC. This table is maintained
by the slow path.

B. Slow path processing flow

The slow path program listens and processes packets sent
from the related XDP program. The process can be a routing
algorithm, load balancing algorithm or payload analysis, etc.,
depending on the VNF that the programmer wants to build.

After the slow path processes packets, the rule which
indicates how to process incoming similar packets is created
in the form of key-value and installed into the equivalent
Matcher in the fast path. Next packets that have similarity with
this packet (by matching a key-value entry) can be processed
directly in the fast path.

C. Fast-slow path communication

Because eBPF tables can be accessed by both fast and slow
path, we use it as an interface for bidirectional communication
between the fast path and the slow path. Both fast and slow
path can asynchronously read and write to eBPF tables. In our
architecture, we utilize eBPF tables for two types of interface:

• Match/action interface: Install (or remove) rules into (or
from) the fast path which indicate how to process next
packets.

• Generic data interface: Query the stateful data of the
fast path program. The stateful data is optional. The
generic data interface may be needed if the slow path
program needs extra information such as the current state
of the XDP program or packet statistics.

D. Split work between fast and slow path

One of the main problems of the eVNF architecture is how
to partition work between the fast and slow path. There are
three cases which can happen:

• If all work can be done in XDP (e.g., simple load bal-
ancing, per-flow statistic, etc.), then this option is optimal
for throughput and latency. The slow path program is
optional and may only be used for initial configuration.

• If the VNF is complicated but can be divided into fast-
path and slow-path (usually, when a group of packets can
be processed in the same way as a flow), then the hybrid
method can be applied (e.g., traffic classification, load
balancer, firewall, dynamic monitoring, etc.)

• If the VNF requires complex processing that is different
for all packets or requires access to the payload of all
packets (which means little or no work can be done
in XDP), then we fall back to legacy VNF (e.g., Deep
Content Inspection).

The boundary between these methods is not always clear
(e.g., a load balancer can be done either fully in-kernel or
hybrid). It depends on the VNF function requirement to choose
the suitable method (e.g., if the load balancer only uses a
simple static scheduling algorithm, then we can implement
every task in XDP, but if the load balancer uses a more
sophisticated algorithm, then the hybrid method is the way
to go).

E. Working mode

There are three working modes depending on how the
processing rules are installed into the fast path.

• Proactive: In this mode, rules are installed into the fast
path without the need of sending packets from the fast
path to the slow path. This working mode provides the
best efficiency.

• Reactive: In this mode, rules are installed into the fast
path after there is a new packet flow sent to the slow path
(which means the fast path does not have an equivalent
rule for this packet yet). This working mode provides
better flexibility in implementing VNF algorithms.

• Offloading: eVNF architecture can offload some part of
packet processing from a legacy VNF to XDP with little
or no modification in the legacy VNF. In this mode, if
the packet is not suitable to be processed in XDP, it is
passed to the legacy VNF, and no rule will be installed
into the fast path. For example, we can offload simple
firewall rules into XDP, while complicated rules (e.g.,
with connection tracking) can be put in iptables.



F. Performance bound and scalability

Because we do not have prior information on how many
packets will be processed by the fast path and by the slow
path, we need to consider the performance hit in the case all
packets go through the slow path. Because XDP is designed to
work in conjunction with the kernel networking stack, passing
packets from XDP to upper kernel layers has negligible cost.
The XDP program size is also limited to ensure that an XDP
program can process packets quickly enough. As a result, the
lower bound of eVNF is nearly the same as the performance
of legacy VNFs (will be shown later in our evaluation). This
also ensures the performance of the offloading mode of eVNF.

Regarding the scalability, XDP does scale well with the
number of CPU cores [3]. XDP works well with Linux scala-
bility mechanisms such as Receive Side Scaling (RSS), which
distributes packets over CPU cores. Hence, the scalability of
eVNF depends on how programmers design the slow path.

G. eBPF vs. XDP

Our architecture can be applied to both eBPF and XDP.
Choosing whether to use eBPF or XDP to implement the fast
path depends on the VNF requirements. XDP offers higher
throughput and lower latency, but it only works in ingress
direction and does not work for egress direction. XDP also
lacks several capabilities compared to eBPF, such as packet
cloning.

H. Service function chain

One important aspect of NFV is the ability to chain VNFs
together to provide network services. In this work, we consider
the case that VNFs are deployed in VMs. When deployed
with the ratio of 1 VNF - 1 VM, eVNF-based VNFs are
compatible with NFV MANOs that use VM-based chaining,
such as OpenStack [23].

In some cases, users may want to put several VNFs that
usually come together into the same VM. This is supported
by the Linux networking stack, but can be a problem with
XDP: there should be only one XDP program that directly
listens to a network interface at a time. The solution is using
eBPF/XDP tail-call, a special mechanism that allows multiple
XDP programs to be chained together. However, in eVNF,
packets can travel either through the fast path or the slow path,
hence we use tail-call to chain the fast path programs and let
the kernel network stack processes the slow path of VNFs. The
packet path thus can be complicated and the chaining should
be handled carefully. Otherwise, some packets may not pass
through the expected path. The maximum number of XDP
programs in a chain with tail-call is 32, which is more than
enough for a typical SFC.

I. Comparison with OpenFlow

Our approach may look similar to how OpenFlow network
operates: using fast path and slow path, using match/action
tables. A packet is processed inside the eBPF kernel program
(equivalent to the OpenFlow switch) if there is a matched entry

or sent to user space program (equivalent to the OpenFlow
controller) if there is no match. However, our approach is
applied at a smaller scale: in one host machine instead of
the whole network. There are two main differences compared
with OpenFlow:

• The switching time between user space and kernel space
in XDP is much lower than the communication delay
between OpenFlow controller and OpenFlow switch.

• OpenFlow has fixed functions that are indicated in its
specification (no programmability), while XDP is pro-
grammable. Users can program any custom actions they
want within the capability of XDP.

These two differences enable building high performance
VNFs with eVNF architecture using eBPF/XDP.

IV. VNF IMPLEMENTATION WITH eVNF

In this section, we briefly present the overview, design, and
implementation of three VNFs using eVNF architecture: Fire-
wall (eFW), Deep Packet Inspection for traffic classification
(eDPI), and Load Balancer (eLB). For prototype builds, we use
BPF Compiler Collection1, a toolkit for building eBPF/XDP-
based applications. We also show how to integrate eVNF with
OpenStack. The source code is available on Github 2.

A. eFW

Iptables is widely used for configuring the Linux kernel
firewall. With iptables, users can create flexible filtering rules
to filter traffic based on flow characteristics and connection
state. One problem with iptables is that it is based on netfilter,
so the packets still need to traverse several kernel networking
layers before being processed. The other problem is that
iptables uses sequence lookup (it scans every rule until finding
a matching entry), this makes it slow if the matched rule
is not in the head of the list. There are several works that
tried to solve these two problems by replacing iptables with
eBPF/XDP [19, 20], but not yet succeeded in fully replacing
iptables. Iptables is a very complex system that is hard to
be fully implemented in XDP, due to its programmability
limitation.

eFW tries to solve the first problem. With the observation
that a firewall might have some common simple rules [20]
(e.g., open port 80/443 to public access, open others for
internal network only), eFW offloads these common simple
rules to XDP, and let the other packets still be processed
by iptables rules. We implemented eFW with a Matcher to
lookup for port, and another Matcher to lookup for subnet.
Any packets that are not matched will be passed to iptables.
In our design, eFW works in offloading mode and netfilter is
considered as the slow path. Note that rules in eFW fast path
have higher priority than rules in iptables.

1BPF Compiler Collection, https://github.com/iovisor/bcc
2eVNF, https://github.com/dpnm-ni/ni-evnf.git



B. eDPI

Deep Packet Inspection (DPI) for Traffic Classification
(DPI-TC) is used to classify traffic in the network (e.g.,
email, VoIP, video, etc.) and is important for monitoring and
accounting.

For traffic classification, there is no need to do the analysis
for the packet belonging to a flow that is already classified.
Open-sourced DPI-TC such as nDPI [24] only uses several
first packets to detect the application protocols. Packets that
come to nDPI and belong to classified flows are discarded.
Although nDPI does not process classified packets, there is
still a cost of kernel networking stack processing and kernel-
user space switching.

We propose eDPI to solve the above problem. Because of
the XDP limitations, we cannot develop an DPI engine inside
the kernel with XDP. However, by applying eVNF, we can
use XDP to improve DPI-TC by only sending the unclassified
packets to the DPI instance.

We implemented eDPI based on nDPI, using eVNF architec-
ture in reactive mode. In the fast path, we create a Matcher that
matches 5-tuple flows to filter the classified and unclassified
traffic. Only unclassified traffic is passed to the slow path
(which is the nDPI instance), while classified traffic is directly
forwarded to the next target. In the slow path, nDPI detects the
traffic, creates a 5-tuple rule for the classified flow, and installs
it into the fast path, thus next packets that match the 5-tuple
will not be passed to nDPI. Not all flows but only 5-tuples of
long elephant flows (such as video, multimedia, VoIP) should
be injected into the fast path.

C. eLB

It is common to have multiple application servers that serve
one service. A load balancer distributes requests to these
servers using a scheduling algorithm. There are several popular
software load balancers such as HAproxy [25]. These load
balancers are implemented in user space, they are flexible but
slow compared to eBPF/XDP based solutions like Katran [22].

By applying eVNF, we can use XDP to implement eLB
with more flexible load balancing algorithms, such as dynamic
feedback scheduling [26]. Dynamic feedback scheduling takes
real-time server load into account. It periodically queries the
server loads and re-calculates the traffic distribution to each
server. Details of the algorithm are presented in [26].

In eLB, the fast path calculates the hash of source IP and
port, matches them in a server selection Matcher to get the
next server IP address. However, to ensure the consistency of
connections, eLB has a connection tracking table, so that a
packet that belongs to an already established connection will
be forwarded to the correct server. The slow path periodically
queries servers to get real-time statistics, and changes the
server selection Matcher. The server selection Matcher is an
array with each entry corresponding to one server. By changing
the number of entries for each server, we can change the
percentage of requests sent to each server. eLB can also work

in offloading mode with HAproxy, we do not use it in our
testbed though.

eLB uses Simple Network Management Protocol (SNMP)
to get the average server load information. We only consider
CPU load for our prototype. We use the Destination Network
Address Translation (DNAT) method for redirecting the pack-
ets (which means the eLB only modifies the destination header
fields of incoming packets and source header fields of out-
going packets).

D. OpenStack integration

Although XDP has a generic mode that can work with
any NIC driver, XDP requires supported NIC drivers to
achieve optimal performance. For eVNF to work optimally
with OpenStack, users should use Kernel Virtual Machine
(KVM) as the hypervisor and use virtio-net as the virtual
network interface for guest VMs. Virtio-net driver is designed
specially to accelerate VM networking and is supported by
XDP from kernel v4.10.

In OpenStack, DPDK can be used to accelerate the net-
work infrastructure. While eBPF/XDP based solutions such as
IOVisor-OVN are available, the performance still lags behind
DPDK [3]. Users can take the best of both worlds: using
DPDK for inter-VM networking and using XDP to accelerate
VNF packet processing.

V. EVALUATION

In this section, we evaluate three eVNF-based VNFs in
two SFCs. We deploy them with OpenStack [23], an open-
source software platform for cloud computing and Network
Function Virtualization. We evaluate our eVNF-based VNFs
regarding three aspects: latency, throughput, and CPU usage;
and compare them with equivalent legacy VNFs. In each test,
throughput, latency and CPU usage are measured simultane-
ously. We also evaluate the effect of DPDK and the effect of
combining multiple VNFs in one VM.

Compute node

Client VNF 1 VNF n Server

OVS-DPDK

wrk FW LB nginx SFC 1

SFC 2
Controller node
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Neutron
...

iperf3
client FW DPI-TC iperf3

server

Fig. 3. Testbed setup

In our testbed, we use OpenStack Rocky version with one
controller node and one compute node (Fig. 3). All controller



services are installed on a separate node. All VMs and VNFs
are deployed on one OpenStack compute node, which does not
represent the real environment, but does not affect the purpose
of our experiment. Each VNF is deployed in one separate
VM. Open vSwitch (OvS)3 is used for inter-VM and VNF
networking. All VMs and VNFs run Ubuntu server 16.04 with
kernel v4.14. Each VNF is allocated 1 vCPU and 1 GB of
RAM. The OpenStack compute node is a Dell R610 server
with 2 Intel Xeon X5650 CPUs and 24GB RAM, distributed
in 2 NUMA nodes. Hyper-threading is enabled.

To create SFCs, we first used OpenStack sfc classifier to
filter the traffic that needs to travel the SFCs, then used
OpenStack sfc port chain to chain VNFs together.

A. Web service SFC: firewall - load balancer

It is common to deploy a firewall and load balancer at the
front face of a web service. We created an SFC with a firewall
and a load balancer between clients and servers (Fig. 3 SFC
1). Each client/server VM has 4 vCPUs. We used two servers
that run nginx4. The client used wrk5 to send HTTP GET
requests to servers, the servers then send HTTP responses with
no accompanying data. The number of parallel connections
was changed during the test. We used DPDK to accelerate
OvS. In the first test, we used iptables firewall and HAproxy
load balancer (running in layer 4 mode). In the second test,
we used our eFW and eLB. We also measured the average
CPU usage in the firewall and load balancer instances during
the test.
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Fig. 4. Throughput measured in SFC 1

In general, eVNF simultaneously increases the throughput
(Fig. 4) and reduces end-to-end latency (Fig. 5) in all cases.
eVNF improves the throughput (number of completed requests
per second) by 1.4x times when the number of concurrent
connections is 4, and by up to 2.5x times when the number of
connections is 36. When eVNF is not used and the number of
connections exceeds 12, the throughput is not increased any
more because the CPUs of HAproxy are saturated (Fig. 6).
This does not happen in the case of using eVNF. Regarding the
end-to-end latency, eVNF also reduces the end-to-end latency

3OvS, https://www.openvswitch.org
4nginx, https://nginx.org/en
5wrk, https://github.com/wg/wrk

by 32% when the number of connections is 4, and by up to
about 51% when the number of connections is 36. Note that
the end-to-end latency is contributed by not only the VNFs,
but also the inter-VM networking and client/server processing.
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eVNF drastically reduces CPU usage, especially in the case
of eLB vs. HAproxy (Fig. 6). In the case of eFW and iptables
firewall, CPU usage is always below 2%. Although the CPU
usage of eFW is always lower than the CPU usage of iptables
firewall, the measurement noise might be high, so we are not
confident to conclude anything. However, in the case of the
load balancer: HAproxy CPU usage is always higher than 90%
and is saturated when the number of connections is larger
than 20; while eLB CPU usage is always smaller than 2% in
all cases. HAproxy layer 4 load balancer works at user-space
level, thus when there are a high number of requests, there is a
huge cost for kernel networking stack traversal and kernel-user
space switching.
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B. Effect of DPDK

In this test, we used the same setup with the web service
SFC 1, but switched between OvS (without DPDK) and OvS-
DPDK for inter-VNF networking. The cost for switching
packets between VNFs is high; using DPDK brings a huge
improvement in both throughput (Fig. 4) and latency (Fig. 5).
With eVNF-based VNFs, using DPDK improved throughput
by about 2.6x to 3.2x times and reduced latency by about
70% to 78%. With traditional VNFs, using DPDK improved
throughput by about 2.7x to 4.5x times and reduced latency
by about 64% to 78%.



Although DPDK has a huge benefit, there are some Open-
Stack features that do not support DPDK (such as Distributed
Virtual Routing). This can lead to performance degradation. If
DPDK is not used, eVNF can still be used to accelerate VNFs.
When not using DPDK, eVNF increased throughput up to
3.7x times and reduced latency up to 52%. eBPF/XDP-based
solutions for inter-VM networking such as IOVisor-OVN can
be used, we did not test this in our work though. If DPDK is
available to use, the combination of DPDK and eVNF provides
the best performance.

C. Multiple VNFs in one VM

Firewall and load balancer usually come together in an
SFC for web services, hence it might be beneficial to put
them in the same VM. In this test, we used the same setup
with the web service SFC 1, but put eFW and eLB in the
same VM and chained them using XDP tail-call. Compared
to separating eFW and eLB into two VMs, putting them in
one VM improved the throughput up to 1.2x times (Fig. 4)
and reduced the latency by up to 12% (Fig. 5), while reducing
the total number of vCPUs used from 2 to 1.

D. Network provider SFC: Firewall - Traffic Classification

Network providers might need to use DPI-TC for traffic
accounting. We created a SFC with a firewall and a DPI-TC
(Fig. 3 SFC 2). OvS-DPDK is used. Both client and server
used iperf36. Each client/server VM has 4 vCPUs. The traffic
contains 4 iperf3 flows with equal throughput. In the first run,
we used eFW and eDPI. To emulate the different percentage
of elephant flows in the traffic, we modify the eDPI protocol
signature to detect each iperf flow as elephant or non-elephant
traffic flow. The percentage of elephant traffic is switched
between 0%, 25%, 50%, 75%, and 100%, which are equivalent
to 0, 1, 2, 3, and 4 elephant flows, respectively. We used eFW
and nDPI for the second run. For the final run, we used iptables
firewall and nDPI.
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With eVNF, throughput and CPU usage are improved when
the percentage of elephant flows is increased. When there is
no elephant flow offloaded to XDP, maximum throughput is
3.0 Gbps and the CPU usage of eDPI instance is saturated.

6iperf3, https://github.com/esnet/iperf

When the percentage of elephant flows is 50%, the throughput
increases to 3.6 Gbps and CPU usage of eDPI decreases to
66%. In the ideal case when all traffic flows are elephant flows,
the throughput increases to 5.0 Gbps and the CPU usage of
eDPI reduces to about 1%.

When we keep eFW but switch the DPI between nDPI and
eDPI, the throughput in the nDPI case (3.04 Gbps) is nearly the
same as the eDPI case without any elephant flows (3.0 Gbps).
This shows that XDP has a negligible performance impact on
eDPI. Most of the CPU usage goes to kernel networking stack
and DPI engine.

When we keep nDPI but switch from eFW to iptables
firewall, the CPU usage of firewall is very small in both cases,
but the throughput is reduced (from 3.04 Gbps to 2.3 Gbps).
In the Iptables firewall, packets need to travel several layers in
the kernel networking stack (including skb buffer allocation),
which has negligible cost in terms of CPU, but might increase
latency and have a significant impact in the context of high-
throughput traffic.

VI. CONCLUSION

In this paper, we proposed eVNF - a hybrid method for
building VNFs that leverages the speed of XDP in-kernel
packet processing and the flexibility of generic software pro-
grams, enabling building complex VNFs with high perfor-
mance. We discussed various aspects of eVNF architecture.
To prove the feasibility of eVNF, we have developed three
prototype VNFs with the hybrid method: eFW, eDPI, and
eLB. The evaluation results showed significant improvement
in throughput, latency and CPU usage compared to traditional
solutions.

In this work, we only consider VM-based VNFs. Nowadays,
container-based NFV, which has its own advantages over VM-
based NFV, is becoming popular. While eBPF/XDP can be
used for container networking [17], whether eVNF architecture
can be applied for containers is still an open question. Also, we
have not yet done the evaluation of eVNF with SR-IOV, which
could further improve the performance. We plan to solve these
issues in our future work.
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